
Chunk Tagged Corpus Creation for Myanmar Language

Phyu Hninn Myint, Tin Myat Htwe and Ni Lar Thein
University of Computer Studies, Yangon, Myanmar.

phyuhm@gmail.com

Abstract

 In the applications of Natural language
processing (NLP), sentence analysis is one of the
important phases for machine translation
systems. Currently, no mature deep analysis that
has been worked done is available for Myanmar
language. To perform shallow parsing on
sentences, the chunk identification is a
fundamental task. The POS tagged corpus
creation has been proposed in [8] and in this
paper, we have proposed a methodology for
building chunk tagged corpus for Myanmar
Language. We use the POS tagged corpus that is
proposed in [8] and identify chunks in Myanmar
POS tagged texts. Our approach uses rule-based
on how to identify all chunks in a Myanmar
sentence. As a preprocessing step, normalization
of POS tags is needed to perform in order to
produce finer tags. Hence, normalization rules
are also developed. After normalization, chunk
rules are applied to tag chunk for these finer
tags. Our chunk tagged corpus is very useful in
Myanmar to English machine translation system.

1. Introduction

 In general, text chunking consists of
identifying non-recursive phrase structures from
a sequence of tokens and classifying them into
some syntactic categories like base noun phrases
and base verb phrases. As an intermediate step
towards full parsing, text chunking has been
attracting more and more attention in the NLP
community. It is recognized as an important
subtask of many large NLP applications such as
machine translation, text mining and question
answering. Chunking is the process of annotating
tagged tokens with structures in a non-

hierarchical and non-recursive way. Text
chunking is a useful preprocessing step for
parsing. It consists of dividing a text into phrases
in such a way that syntactically related words
become member of the same phrase. These
phrases are non-overlapping which means that
one word can only be a member of one chunk. In
CoNLL-2000 chunking task, chunking was
defined as "the task of dividing a text into
phrases in such a way that syntactically related
words become members of the same phrase" [9].
 There are multiple approaches to solving
NLP problems: Rule Based, Statistics Based,
Hybrid systems, etc. Rule Based (Symbolic)
system is developed like traditional expert
systems by using hand coded rules. Advantages
of rule based system are: it is fast to develop and
it doesn’t require large datasets. Disadvantage of
that system is: it is costly to maintain. Statistics
Based (Empirical) system annotate data based on
standard tagsets, and then machine learn a
model. Advantages are: it is a current trend and
robust, and it performs better. Disadvantages are:
it is extensive upfront cost, it requires lots of data
and improvement may not correct obvious errors.
Hybrid systems often blend rule-based pre- and
post-processing with machine learning core.
Human intuition plays a large role in both, either
in coding the rules directly or in deciding what
features to use. It can be driven by error analysis.
 Since the early 90's, several techniques for
carrying out shallow parsing have been
developed. These techniques can also be
classified into two main groups: based on hand-
code linguistic rules and based on learning
algorithms. These approaches have a common
characteristic: they take the sequence of lexical
tags proposed by a POS tagger as input, for both
the learning and the chunking processes [1].

 However, when developing a chunker for a
new language, statistical and machine learning
methods require an already preprocessed corpus
which is not always available. In our case, such a
corpus for Myanmar language does not exist at
all so we had to opt for the rule-based approach
that would, in the prospect, end up with a data-
set usable for future testing of similar systems for
Myanmar language. In this paper, we describe
the attempt to build the rule-based chunker in
order to develop the chunk tagged corpus for
Myanmar language and evaluate its performance.
The typical chunk consists of a single content
word surrounded by a constellation of function
words, matching a fixed template. A simple
context-free grammar is quite adequate to
describe the structure of chunks. Therefore, our
rules are described in the context-free-grammar
structure.
 The rest of the paper is organized as follows:
Section II describes the related work. Section III
gives a brief description of our chunking
methodology. Section IV describes our
customized chunk tagset. Section V presents
normalization rules. Section VI discusses about
chunking rules. Finally, the experimental results
and some conclusions on this work are given in
section VII and section VIII respectively.

2. Related Work

 Chunking is today considered to be the
preprocessing stage that may facilitate the full
parsing of sentences of a certain language. This
task has already been proven using different
methods: rule-based, memory-based, statistical
and combined systems. However, when
developing a chunker for a new language,
statistical and machine learning methods require
an already preprocessed corpus which is not
always available.
 In the early nineties, Steven P. Abney [1]
proposed to approach parsing by starting with
finding related chunks of words. Author said that
a typical natural language parser processes text
in two stages. A tokenizer/morphological
analyzer converts a stream of characters into a
stream of words, and the parser proper converts a
stream of words into a parsed sentence, or a

stream of parsed sentences. In a chunking parser,
the syntactic analyzer is decomposed into two
separate stages, which he called the chunker and
the attacher. The chunker converts a stream of
words into a stream of chunks, and the attacher
converts the stream of chunks into a stream of
sentences. Then, this author described that the
chunker is a non-deterministic version of an LR
parser. An LR parser is a deterministic bottom-
up parser. It is possible to automatically generate
an LR parser for any of a large class of context-
free grammars. The parser shifts words from the
input string onto the stack until it recognizes a
sequence of words matching the right-hand side
of a rule from the grammar. At that point, it
reduces the sequence to a single node, whose
category is given in the left-hand side of the rule.
 Steven P. Abney [2] proposed that corpus-
oriented computational linguistics is technique
for bootstrapping broad-coverage parsers from
text corpora. The work is a step along the way
toward a bootstrapping scheme that involves
inducing a tagger from word distributions, a low-
level “chunk” parser from a tagged corpus, and
lexical dependencies from a chunked corpus.
Author presented a technique, finite-state
cascades, for producing fast, robust parsers for
unrestricted text. The technique has been applied
to English and German, and is being used in a
project for inducing sub-categorization frames
and selected restrictions in these languages. The
parser consists of a pipeline of finite-state
recognizers. Key concepts are easy-first parsing,
islands of certainty, and containment of
ambiguity. Finite-state cascades can be extended
to include feature assignment and output of
“linguistic” structure at little cost in efficiency.
 K. Vuckovic, M. Tadic and Z. Dovedan [10]
presented the first attempt to develop a
chunker for Croatian. They opted for rule-
based approach since there are no corpora
annotated for chunks in Croatian and no
machine-learning or statistical-based methods
could be applied. Obtained results showed
correctly assigned chunk boundaries and types
leading them to the conclusion that rule-based
paradigm would be a reasonable choice for
chunking of larger Croatian corpora in the future.

 I. Boehm [3] compared two chunking
approaches, namely an approach based on
regular expression rules developed by a human
and a machine based chunking approach based
on a N-gram statistical tagger. Experimental
results showed that the performance of the
machine based chunker is very similar to the
results obtained by the regular expression
chunker.

3. Methodology

 There are broadly two approaches for the
development of chunkers - the linguistic
approach which depends upon hand-crafted
grammars, and the machine learning approach
where chunkers are learned automatically from a
labeled training corpus. Since there is no
available chunk tagged corpus for Myanmar
language, we use rule-based chunker to build
chunk tagged corpus by applying available POS
tagged corpus. In order to be able to parse a
sentence, a defined set of rules, called a
“grammar” is needed. For simple texts, a simple
grammar often suffices, but as the complexity of
texts increases, the size of the grammar increases
too.

3.1. Context-Free Grammar

 Groups of words may behave as a single unit
or phrase, called a constituent. The most
common way of modeling constituency is
Context-Free Grammar (CFG). A CFG defines a
formal language: the set of all sentences that can
be derived by the grammar. Context free
grammars are powerful enough to describe the
syntax of most programming languages; in fact,
the syntax of most programming languages is
specified using context-free grammars.
 A Context-Free Grammar is a 4-tuple
(N,T,P,S) where N is a finite set of non-terminal
symbols, T is a finite set of terminal symbols,
disjoint from N, S is a special designated symbol
from N called the Start Symbol, and P is a finite
set of Production Rules (or Productions), of the
form A -> α where A is any non-terminal
symbol and α is any sequence of terminal and
non-terminal symbols. These grammars are

called 'context free' because all rules contain only
one symbol on the left hand side and wherever
we see that symbol while doing a derivation, we
are free to replace it with the stuff on the right
hand side.
 A CFG is described briefly as follows:

 In our approach, using CFG, in normalization
step, terminals set includes basic tags from
lexicon and non-terminals are finer tags. In
chunking step, finer tags and basic tags become
the members of terminal set and chunk tags are
included in the non-terminals set.

3.2. Proposed Approach

 The input to the parsing system is one
sentence, either plain or POS tagged. Output is
an ordered set of parses. The aim is to produce
all possible parses in ranked order hoping to get
the best parse to the top. In parsing, a sentence is
a sequence of chunks. Chunks are sequences of
words.
 This paper presents about a system which
develop a chunk tagged corpus from POS tagged
corpus. We use the POS tagged corpus proposed
by the system described in [8]. The input of the
system is Myanmar sentences which are tagged
with basic POS tags from this corpus. These tags
are driven from Myanmar dictionary so that it
can be called stem word tagging. These tags are
needed to normalize using lexical rules. Output
of this step is Myanmar sentences which are
tagged with finer POS tags. Then, chunk rules
are applied to chunk these sentences and to
create chunk tagged corpus. The main steps of
the system are as follows:

G = <T, N, S, R>

o T is set of terminals
o N is set of non-terminals
o S is start symbol (one of the nonterminals)
o R is rules/productions of the form A -> α

- where A is a nonterminal and α is a
sequence of terminals and nonterminals
(may be empty).

o A grammar G generates a language L.

(A) Normalizing and forming finer tag
(B) Chunking and creating chunk tag

 Figure 1 demonstrates the scheme of the
system.

Figure 1. Chunk tagged corpus creation

scheme
A. Normalizing and forming finer tag

 We have done some preliminary experiments
including corpus analysis to understand the
nature of Myanmar language. Normalization step
is needed to form more meaningful words and
annotate with more appropriate finer POS tags
and categories. In our language, Myanmar, there
are many "Particles" in the text. These can be
appeared in binding with Noun, Verb, Adjective
and Adverb in the text. Moreover, these can
convert the type of POS tag, that is, Noun
attached with some particles can become Verb or
Adjective. Also, Verb or Adjective with some
particles can create new POS tag, which is
Adjective with superlative or comparative
degree. There are the same pattern and particle to
transform from one POS tag to another.
Therefore, some lexical rules have to be
developed to deduce more finer and standard
POS tag. The normalization rules are explained
with the description of CFG and the detail
examples in Section V.

B. Chunking and creating chunk tag

 For chunking system, chunk rules have to be
defined to assemble the POS tagged words. Finer
POS tags have to be used to identify chunk. In
addition, some particles are needed to combine
with other POS tags in order to create one chunk.
Therefore, chunking rules have to be developed
and they are revealed with the description of
CFG and how to chunk the sentences is
described with detail examples in Section VI.

4. Customized Chunk Tagset

 A chunk consists of a head word and its
modifiers. The customized chunk tagset uses
only 7 chunk tags. The customized basic POS
tagset used in the input corpus includes only 14
POS tags. To obtain more accurate lexical
information together with POS tag, category of a
word has to be added by Myanmar grammar.
This category can be applied in further NLP
applications. The category for a word can be
formed from the features of that word. For
example, Noun has 16 categories such as
Objects, Person, Animals, Food, Location, etc.
For instance, "မိန္းကေလး" (girl) word must be
tagged with NN.Person (Person category of
Noun tag). Also, "သို႔" (to) has to be tagged with
PPM.Direction (Direction type of Postpositional
Marker).
 Moreover, finer POS tagset, including only 6
tags, is proposed to normalize the basic tags.
Customized POS tagsets and chunk tagset are
described in Appendix section at the end of the
paper.

5. Normalization Rules

 This paper creates lexical rules for finer POS
tagging and using these rules, finer and standard
POS tags can be produced. These finer tags are
able to be applied in the later steps of NLP
applications. It is possible that word with finer
tag can be directly translated to other language.
We have to analyze "Particles" which are
functional words to develop most of the lexical
rules.

 In Myanmar language, there are many

particles which can be called affixes of the word
and can cause the changes of sense or type of
that word. The prefixes are "မ-"(ma-), "A-"(a-)
and "တ-"(ta-). The prefix "မ-" (ma-) is an
immediate constituent of the verb, which is the
head of the word construction as in: ma-swa: မ-
သြား: ‘not go’; ma-kaung: မ-ေကာင္း : ‘not good’. It
changes the positive sense to negative sense of
the word. The scope of verbal negation extends
to the whole compound of a compound verb, as
in ma-tang pra: မ-တင္ျပ : ‘not submit’; ma-saung-
ywat : မ-ေဆာင္ရြက္ : ‘not carry out’. Another
pattern of negation is possible with verb
compounds or verb phrases by individualized
negation of each portion of the compound, as in:
ma-ip ma-ne : မ-Aိပ္ မ-ေန : 'not sleep at all'; ma-
tang ma-kya: မ-တင္ မ-က် : ‘noncommittal’.

The prefix "A-" (a-) is a type converter
which is the head word of the verb or adjective
as in: a-lote: A-လုပ္ : ‘work or job’; a-hla : A-လွ :
‘beauty’. The prefix "တ-" (ta-) can also be seen
as a type converter, as in ta-lwal ta-chaw: တ-လြဲ
တ-ေခ်ာ္ : ‘wrongly’.

The postfixes are "-မႈ" (-mhu), "-ျခင္း" (-
ching), "-ခ်က္" (-chat), "-ေရး" (-yay), "-နည္း" (-nee),
"-စြာ" (-swar), "-ေသာ" (-thaw), "သည္႔" (-thi), "-မည္႔ "
(-myi), etc. The postfixes "-မႈ" (-mhu), "-ျခင္း" (-
ching), "-ခ်က္" (-chat), "-ေရး" (-yay), "-နည္း" (-nee)
change the type of the previous POS tag from
verb or adjective or adverb to noun. The words
ended with these postfixes are in the noun form.
Also, the postfixes "-ေသာ" (-thaw), "သည္႔" (-thi), "-
မည္႔ " (-myi) convert to the adjective form from
adjective or adverb or verb. The postfixes "-စြာ" (-
swar) alters the type of adjective or verb or
adverb to form adverb. In noun form, the
postfixes "-မ်ား" (-myar), "-တို႔" (-doh) change the
singular noun to plural noun.

Moreover, in adjective, if JJ tag is lied
between two affixes "A" (-a) and "ဆံုး" (-sone),
this tag JJ become to JJS (superlative degree),
i.e., " A JJ ဆံုး " is equal to "JJS".

Some of the normalization rules are
described using CFG as follows ::

The sample input text from the POS tagged

corpus and output of the normalization step are
as follows:

Example 1::

Example 2::

Before Normalization,

� " သူ/PRN.PersonPRN.PersonPRN.PersonPRN.Person # တို႔/PART.NumberPART.NumberPART.NumberPART.Number #

သည္/PPM.Subject # A တန္း/NN.Common #

ထဲတြင္/PPM.Extract # A /PART.CommPART.CommPART.CommPART.Commonononon

#ေတာ္/JJ.DemonstrativeJJ.DemonstrativeJJ.DemonstrativeJJ.Demonstrative # ဆံုး/PART.CommonPART.CommonPART.CommonPART.Common #

ေက်ာင္းသား/NN.PersonNN.PersonNN.PersonNN.Person # မ်ား/PART.NumberPART.NumberPART.NumberPART.Number #

ျဖစ္/VB.Common # ၾက/PART.Support #သည္/SF "

After Normalization,

Before Normalization,

� " က်န္းမာ/VB.CommonVB.CommonVB.CommonVB.Common # ျခင္း/PART.CommonPART.CommonPART.CommonPART.Common #

သည္/PPM.Subject # လာဘ္/NN.Common #

တစ္/PART.Number # ပါး/PART.Type #

ျဖစ္/VB.Common # သည္ /SF "

After Normalization,

� " က်န္းမာျခင္း/NNNNNNNN # သည္/PPM.Subject # လာဘ္

/NN.Common # တစ္ /PART.Number # ပါး

/PART.Type # ျဖစ္/VB.Common # သည္ /SF "

JJ -> JJ (ေသာ | သည္႔ | မည္႔)

JJS -> A JJ ဆံုး

JJC -> (ပုိ၍ | သာ၍ | ပို) JJ

RB -> RB စြာ

NNR -> NN (မ်ား | တို႔)

NNR -> PRN (မ်ား | တို႔)

NN -> A VB

NN -> VB (မႈ | ျခင္း | ခ်က္ | ေရး | နည္း)

6. Chunking Rules

For chunking steps, chunk rules have to
define to build chunk for POS tagged words.
There are many particles which are attached with
finer POS tags. Most of them are postfixes of
verb. They include -ခဲ႔ (-khae`), -ၾက (-kya), -ေလ (-
lay), -ေန (-nay), -ထား (-htar), လိုက္ (-lite), - ခ်င္ (-
chin), etc. We have to combine adjective and
noun tags to form noun chunk and also adverb
and verb tags to verb chunk.

Some of the chunking rules are described
using CFG as follows ::

After normalization, the finer POS tags are

chunked at the chunking step as follows:

Example 1::

Example 2::

RC -> RB RB*

JC -> JJ | JJS | JJR

JC -> JJ JJ*

PPC -> PPM

SFC -> SF

After Normalization,

� "သူတို႔/NNRNNRNNRNNR # သည္/PPM.Subject #

Aတန္း/NN.Common # ထတဲြင/္PPM.Extract #

Aေတာ္ဆံုး/JJSJJSJJSJJS # ေက်ာင္းသားမ်ား/NNRNNRNNRNNR #

ျဖစ္/VB.Common # ၾက/PART.Support #သည္/SF "

Before Chunking,

� " သူတို႔/NNR # သည္/PPM.Subject #

Aတန္း/NN.Common # ထဲတြင္/PPM.Extract #

Aေတာ္ဆံုး/JJS # ေက်ာင္းသားမ်ား/NNR #

ျဖစ္/VB.Common #ၾက/PART.Support #သည္/SF "

After Chunking,

� " NCNCNCNC [သူတုိ႔/NNR] # PPCPPCPPCPPC [သည္/PPM.Subject] #

NCNCNCNC [Aတန္း/NN.Common] # PPCPPCPPCPPC

[ထဲတြင္/PPM.Extract] # NCNCNCNC [Aေတာ္ဆံုး/JJS #

ေက်ာင္းသားမ်ား/NNR] # VVVVCCCC [ျဖစ္/VB.Common #

ၾက/PART.Support] # SFCSFCSFCSFC [သည္/SF] "

Before Chunking,

� " ငွက္မ်ား/NNR # သည္/PPM.Subject #

ေကာင္းကင္/NN.Natural # တြင္/PPM.Place #

Aုပ္စုဖြဲ႔/VB.Common # ၍/CC.Sent #

ပ်ံသန္း/VB.Common # ေန/Part.Support #

ၾက/Part.Support # သည္/SF "

After Chunking,

� " NCNCNCNC [ငွက္မ်ား/NNR] # PPCPPCPPCPPC [သည္/PPM.Subject]

NCNCNCNC [ေကာင္းကင္/NN.Natural] # PPCPPCPPCPPC

[တြင္/PPM.Place] # VCVCVCVC [Aုပ္စုဖြဲ႔/VB.Common] #

COCCOCCOCCOC [၍/CC.sent] # VCVCVCVC [ပ်ံသန္း/VB.Common,

ေန/Part.Support, ၾက/Part.Support] # SFCSFCSFCSFC

[သည္/SF] "

NC -> NN PART.Number

NC -> NN PART.Common PART.Type

NC -> PRN PART.Possessive NN

NC -> NN PART.Possessive NN

NC -> PRN PART.Number PART.Possessive NN

NC -> (JJ| JJS| JJR) NN

NC -> (JJ| JJS| JJR) NNR

NC -> PRN NN

NC -> PRN NNR

NC -> NN JJ

NC -> NNR JJ

NC -> NN NN* | NNR NNR* | NNP NNP*

VC -> VB PART.Support*

VC -> VB VB*

VC -> RB VB

RC -> RB | RBS | RBR

7. Experimental Results

In order to measure the performance of the
system, we have tested many experiments using
our approach on different types of sentences till
we get the best accuracy. We can evaluate the
result how many wrong chunks are tagged and
how many chunks can be correctly tagged. The
grammar-based systems have limitations because
natural language often does not conform to the
rules of the grammar. Unusual constructions,
casual speech, innovative expressions, mistakes,
noise, and interruptions can all result in sentences
that are quite understandable to a human reader or
listener, but utterly confusing to a rule-based
system. It is hard to write a complete and tight
grammar.

Therefore, the performance of our chunker is
evaluated in terms of problems that can be
encountered in Myanmar sentences because of
some peculiar patterns. The sentences that have
peculiar patterns are entered into the system and
check the accuracy of our chunker. In this
system, there are two portions: normalization and
chunking so that evaluation must be performed
on normalization at first. Some errors can occur
in the normalization step for some words
especially for negative word because unusual
pattern of verbal negation is found in such
patterns where the second verb of a compound is
marked with the negative prefix, as in ne ma-
kaung: ေနမ-ေကာင္း: 'unwell', nar ma-lal: နားမ-လည္
: 'misunderstand', etc. To alleviate these errors,
we have to be inserted these words in the POS
tagged corpus before normalization and their tags
should be basic verb tags at that time.

For chunking, our evaluation result is
depended upon normalization result. If
normalization builds the correct finer tags,
chunker will determine the right chunks. In the
chunking step, error can occur when too many
noun tags or verb tags are appeared continuously,
chunker will assemble them in only one chunk
and identify as one noun chunk or one verb
chunk. It can be encountered in compound verb
or noun.

We have evaluated our rules in terms of the
number of correct chunks it can recognize i.e

recall. We have achieved a high recall of 97.5%
on the POS tagged corpus with normal pattern
text and 92.06% on corpus including peculiar
pattern sentences.

8. Conclusion

This paper proposes an implementation of
chunk tagged corpus using rule based approach.
Lexical rules have to be applied to normalize
some words and tags in order to produce accurate
and finer tags. For the input, a Myanmar POS
tagged corpus, which is developed by [8], has to
be used. The annotation standards for chunk
tagging include 7 tags. “Myanmar-English
Dictionary” [6] and “Myanmar Grammar” [7]
books published by Myanmar Language
Commission are used as references for POS
tagging and chunking of Myanmar words. One of
the improvements to be done is adding more
lexical rules in order to do more accurate
normalization. Another is adding more chunking
rules to get better performance.

For future work, we hope to conduct more
experiments to examine how different types of
input affect the performance. This chunk tagged
corpus can be used in a number of NLP
applications. In Myanmar to English machine
translation system, Grammatical Function
Assignment, Word Sense Disambiguation,
Translation Model and Reordering systems have
to use these chunk tags for analyzing Myanmar
words in order to translate Myanmar text to
English text.

References

[1] Abney, S. P., “Parsing by Chunks”,
Principle-based parsing: computation and
psycholinguistics edition, Kluwer Academic
Publishers, Dordrecht, 1991.
[2] Abney, S. P., “Partial Parsing via Finite-State
Cascades”, In Workshop on Robust Parsing, 8th
European Summer School in Logic, Language
and Information, pages 8–15, Prague, Czech
Republic, 1996.
[3] Boehm, I., “Rule based vs. statistical
chunking of CoNLL data sets”, 2005.

[4] Hopple, P. M., “The structure of
nominalization in burmese”, Ph.D Dissertation,
University of Texas, Arlington, 2003.
[5] Kumar, G. B. and K. N. Murthy, “UCSG: A
Wide Coverage Shallow Parsing System”, In
proceedings of IJCNLP, 7-12 January 2008.
[6] “Myanmar-English Dictionary”, Department
of the Myanmar Language Commission,
Ministry of Education, Myanmar, 2006.
[7] “Myanmar Grammar”, Department of the
Myanmar Language Commission, Ministry of
Education, Myanmar, 2005.
[8] Myint , P.H., “Assigning automatically Part-
of-Speech tags to build tagged corpus for
Myanmar language”, The Fifth Conference on
Parallel Soft Computing, Yangon, Myanmar,
2010.
[9] Tjong Kim Sang, E. F. and S. Buchholz,
“Introduction to the CoNLL-2000 shared task:
Chunking”, Proceedings of CoNLL-2000 and
LLL-2000, Lisbon, Portugal, pages 127-132,
2000.
[10] Vuckovic, K., M. Tadic and Z. Dovedan,
“Rule based chunker for Croatian”, In
Proceedings of LREC, 2008.

Appendix

Table 1.
Customized chunk tagset

No. Tag
Name

Description Example

1. NC Noun Chunk ကေလးမ်ား၊
သူတုိ႔၏စာAုပ္၊
ဤAိမ ္

2. JC Adjectival
Chunk

လွ၊ လိမၼာ

3. RC Adverbial
Chunk

မေန႔က၊
ဂ႐ုစိုက္၍၊

4. COC Conjunctional
Chunk

သုိ႔ေသာ္ ၊ ႏွင့္

5. PPC Prepositional
Chunk

သုိ႔ ၊Aတြက္
၊Aတုိင္း

6. VC Verb Chunk ေက်းဇူးတင္၊
ျပဳလုပ္ ၊
ေျပာၾကား

7. SFC Sentence Final
Chunk

သည္၊ ပါ ၊
ပါသည္၊

Table 2.

Customized basic POS tagset
No. Tag

Name
Description

1. NN Singular Noun

2. NNP Proper Noun
3. PRN Pronoun
4. JJ Adjective
5. RB Adverb
6. VB Verb
7. CC Conjunction
8. PART Particle
9. PPM Postpositional Marker
10. INJ Interjection
11. CRD Cardinal Number
12. ORD Ordinal Number
13. SYM Symbols
14. SF Sentence Final

Table 3.

Customized finer POS tagset
No. Tag Name Description
1. NNR Plural Noun
2. JJC Comparative Adjective
3. JJS Superlative Adjective
4. RBC Comparative Adverb
5. RBS Superlative Adverb
6. NEG Negative

