

1

Finding Shortest Path By Using A* and Dijkstra Algorithm

Aye Thandar Oo, Dr. Mie Mie Khin

Computer University (Monywa)

ayethandaroo87@gmail.com,

Abstract

This paper is intended to present optimal

route finding system for road network application. It

is used to operate in complicated mapping

situations and new unknown environments. This

technique can be implemented to find the optimal

path from source to destination in region of map.

This system use A* and Dijkstra algorithms to draw

plan and develop the Geographic Information

System(GIS) assisted optimal road network route

finding and give shortest path. The optimal (or)

shortest path based on distance or time or cost. And

then evaluates the performance of these two

algorithms.

1. Introduction

 The application of evolutionary computation

techniques for the solution of optimization problems

is now the major area of research. Optimization

problems reveal the fact that the formulation of

engineering design problems involves linear terms

for constraints and objective function but certain

other problems involve nonlinear terms for them. In

some problem, the terms are not explicit functions of

the design variables. Some algorithms perform

better on one problem, but may perform poorly on

other problems. That is why the optimization

literature contains a large number of algorithms,

each suitable to solve a particular type of problem.

Algorithms are very useful in real life

applications. The real-world performance of any

software system depends on only two things: (1) the

algorithms chosen and (2) the suitability and

efficiency of the various layers of implementation.

The choice of a suitable algorithm for an

optimization problem is, to a large extent, dependent

on the user’s experience in solving similar

problems. An important part of computing is the

ability to select algorithms appropriate to particular

purposes and to apply them, recognizing the

possibility that no suitable algorithm may exist. This

facility relies on understanding the range of

algorithms that address an important set of well-

defined problems, recognizing their strengths and

weaknesses, and their suitability in particular

contexts. Efficiency is a pervasive theme throughout

this area.

So, this system intended to develop the GIS

assisted optimal road network route finding

approach based on A* and Dijkstra algorithms. And

then evaluates the performance of these two

algorithms.

2. Geographic Information System(GIS)

Geographic Information System (GIS) is a

computer system capable of capturing, analyzing,

and displaying geographically referenced

information; that is, data identified according to

location. A GIS can also convert existing digital

information, which may not yet be in map from; into

forms it can recognize use. GIS technology

integrates common database operations such as

query and statistical analysis with the unique

visualization and geographic analysis benefits

offered by maps. This geographic information is

information which can be related to a location

(defined in terms of a point, area or blocks) on the

Map. The positional data can be a specific set of

spatial coordinates, or can cover less precise

locations or areas.

These abilities distinguish GIS from other

information systems and make it valuable to a wide

range of public and private enterprises for

explaining events, predicting outcomes, and

planning strategies[1]. This system implements the

GIS based information system of Sagaing Division.

This system would contain functionality that allows

users to point-and-click their location on the map.

3. Searching Strategies

Searches are divided into two main categories:

uninformed searches (brute-force, blind), and

informed (heuristic, directed) searches. Uninformed

searches are done when there is no information

about a preferred search path. Informed searches

have some information to help pick search paths;

mailto:ayethandaroo87@gmail.com

2

usually a rule of thumb is used to reduce the search

area [6].

3.1 Uninformed Search

 These search strategies that come under the

heading of uninformed search or also called blind

search. The term means that they have no additional

information about states beyond that provided in the

problem definition. This strategies can do is

generate successors and distinguish a goal state from

a non-goal state. All search strategies are

distinguished by the order in which nodes are

expanded [5].

3.2 Informed (Heuristic) Search

 Heuristic search is a useful tool in solving

planning problems. Reducing a planning problem

into a graph search problem, the basic aim of

heuristic search is to simplify the process of solving

the problem by subtracting some unnecessary yet

time-consuming computations, usually in the form

of a state expansion. Informed search is the one that

uses problem-specific knowledge beyond the

problem definition. It can finds solution more

efficiently than the uninformed search [5].

4. Shortest Path

It is based on search method. Search methods

aren't the perfect solution for every problem, but

with creative applications it can solve many. If

search is an appropriate solution, then choose the

one which is guaranteed to find the solution.

Furthermore, pick the most efficient one. There are

various search methods. These methods can use to

solve path-finding problem. Path-finding problem

need us to search a path or a way from the start

point to the goal point through some constraint may

exist [2]. This system provides users the option of

selecting their origin or destination on the map of

Sagaing Division. The routing algorithms finds the

optimum path and output is presented to the user

both in text and mark on the map.

4.1. A* Algorithm For The Shortest Path

Problem

A* search is one kind of heuristically informed

search strategy. A* search maintains the set open of

so-called open nodes that have been generated but

not yet expanded. This method always selects a node

from open with minimum estimated cost, one of

those it considers “best”. This node is expanded and

cost of some node n with an evaluation function of

the form f(n)=g(n)+h(n). A* is guaranteed to return

an optimal (minimum-cost) solution (it is also said

to be admissible) [4].

The most widely-known form of best-first search

is called A* search. It evaluates nodes by combining

g(n), the cost to reach the node , and h(n), estimated

cost to the goal from n. f(n)=g(n)+h(n) .f(n),

estimated total cost of path through n to the goal. To

find the cheapest solution, a reasonable thing to try

first is the node with the lowest value of g(n)+h(n).

A* search is both complete and optimal. The

optimality of A* is straight forward to analyze if it is

used with TREE-SEARCH. In this case, A* is

optimal if h(n) is an admissible heuristic_ that is,

provided that h(n) never overestimates the cost to

reach the goal. An admissible heuristic is the

straight-line distance hSLD. Straight-line distance is

admissible because the shortest path between any

two points is a straight-line. So, the straight-line

cannot be an overestimate. Below is an outline of

how A* uses these components to search for optimal

solutions:

1. Create a search graph, G, consisting solely of

the start node, n0. Put n0 on a list called

OPEN.

2. Create a list called CLOSED that is initially

empty.

3. If OPEN is empty, exit with failure.

4. Select the first node on OPEN, remove it

from OPEN, and put it on CLOSED. Call this

node n.

5. If n is a goal node, exit successfully with the

solution obtained by tracing a path along the

pointers from no to n0 in G. (The pointers

define a search tree and are established in

step 7.)

6. Expand node n, generating the set, M, of its

successors that are not already ancestors of n

in G. Install these members of M as

successors of n in G.

7. Establish a pointer to n from each of those

members of M that were not already in G

(i.e., not already on either OPEN or

CLOSED). Add these members of M to

OPEN. For each member, m, of M that was

already on OPEN or CLOSED, redirect its

pointer to n if the best path to m found so far

is through n. For each member of M already

on CLOSED, redirect the pointers of each of

its descendants in G so that they point

backward along the best paths found so far to

these descendants.

8. Reorder the lost OPEN in order of increasing

f(n) values. (Ties among minimal f(n) values

are resolved in favor of the deepest node in

the search tree.)

3

9. Go to step 3.

In step 7, Algorithm redirects pointers from a

node if the search process discovers a path to that

node having lower cost than the one indicated by the

existing pointers. Redirecting pointers of

descendants of nodes already on CLOSED saves

subsequent search effort but at the possible expense

of an exponential amount of computation. Hence,

this part of step 7 is often not implemented. Some of

these pointers will ultimately be redirected in any

case as the search progresses [6].

4.1.1. Algorithm for A*

Begin

 A* search (G , w , s) {

 for(each u Є V){

 d[u] = ∞ ;

 pred[u] = nil ;

 }

 d[s] = 0 ;

 f (V) = 0 ;

 Q = (queue with all vertices)

 While (Non-Empty (Q)) {

 u = Extract-Min (Q)

for (each v Є Adj[u]) {

if (d[u] + w (u ,v) < d[v]) {

 d[v] = d[u] + w (u ,v) ;

 Decrease-Key(Q ,v , d[v]) ;

 pred[v] = u ;

 f (v) = d [v] + h (v,D) } }

 } }

End;

4.2. Dijkstra Algorithm For The Shortest

Path Problem

The first algorithm for solving shortest path

length problems was discovered by a Dutch

computer scientist named Dijkstra in 1959. The

basic premise of this problem is to find the length of

the shortest path between the starting vertex and a

first vertex; then the length of the shortest path

between the starting vertex and a second vertex;

continuing until the length of the shortest path

between the starting vertex and the ending vertex is

found. The goal is to always be looking for the

vertex closest to the starting vertex[3].

Dijkstra's Algorithm is one the most efficient

algorithms for solving the shortest path problem. In

a network, it is frequently desired to find the shortest

path between two nodes. The weights attached to the

edges can be used to represent quantities such as

distances, costs or times. In general, if shortest path

find the minimum distance from one given node of a

network, called the source node or start node, to all

the nodes of the network, Dijkstra's algorithm is one

of the most efficient techniques to implement. In

general, the distance along a path is the sum of the

weights of that path. The minimum distance from

node a to b is the minimum of the distance of any

path from node a to b.

Dijkstra's algorithm is probably the best-known

and thus most implemented shortest path algorithm.

It is simple, easy to understand and implement, yet

impressively efficient. By getting familiar with such

a sharp tool, a developer can solve efficiently and

elegantly problems that would be considered

impossibly hard otherwise. Dijkstra's algorithm,

when applied to a graph, quickly finds the shortest

path from a chosen source to a given destination. In

fact, the algorithm is so powerful that it finds all

shortest paths from the source to all destinations.

This is known as the single-source shortest paths

problem. In the process of finding all shortest paths

to all destinations, Dijkstra's algorithm will also

compute, as a side-effect, a spanning tree for the

graph. While an interesting result in itself, the

spanning tree for a graph can be found using lighter

(more efficient) methods than Dijkstra's [8].

Dijkstra algorithm use priority queue using a

heap for shortest path and perform the operations

Insert(), Extract_Min(), Decrease_Key() in the

priority queue, each in O(log n) time. And then

when processing a vertex u, the algorithm will

examine all vertices v Є Adj[u]. If the length of the

new path from s to v shorter than d[v], then update

d[v] to the length of this new path. This work is

called relaxation [7].

4.2.1. Algorithm for Dijkstra

Begin

Dijkstra (G , w , s) {

 for(each u Є V){

 d[u] = ∞ ;

 pred[u] = nil ;

 }

 d[s] = 0 ;

 Q = (queue with all vertices)

 While (Non-Empty (Q)) {

 u = Extract-Min (Q)

 for (each v Є Adj[u]) {

 if (d[u] + w (u ,v) < d[v]) {

 d[v] = d[u] + w (u ,v) ;

 Decrease-Key(Q ,v , d[v]) ;

 pred[v] = u ; } }

 } }
End;

4

5. System Design

This system contains three main phases. They

are modify map portions, view information and

finding shortest path portion. In modify map

portion, user can create/modify network map for the

system and perform the shortest path algorithms. In

finding shortest path portion, firstly user must

choose the target and destination towns on the map

and then user can search shortest path based on

distance, time and cost by using A* or Dijkstra

Algorithms. And then user can view the shortest

path and other information. After calculating both

A* and Dijkstra algorithm, the system will be

display comparison chart for these two algorithms.

Figure 1. System Flow Diagram

6. Implementation and result

In this system, there are five main categories.

They are view geographic information of Sagaing

Division, searching for shortest path, modify paths

in map, windows style function and system

information menus. In “System” contains

interesting places to view latitude and lontitude of

interesting town and exit to exit the system. In

“Search” contains A* and Dijkstra algorithm to

search shortest path and comparison of processing

time chart for these two algorithms. In “Modify”

contains updating paths in map section such as

adding new town name. In “Windows” contains

style of opening function such as cascade, tile

vertical and tile horizontal.

User can click interesting place on the map,

latitude and longitude of the interesting place can be

shown. The user can click source or start point and

destination or target point on the map. And then

user can search by using Dijkstra and A* algorithms

by clicking the search button on the tool bar. These

algorithms can perform to show the tree structure of

search on possible track and shortest path on the

chart respectively. If the user select “Information”

button, the system will be displayed about the

information of the distance mile, time and cost of

source and destination towns and searching time of

the algorithm as shown in Figure.2.

Figure 2. Possible ways and shortest path

After calculating Dijkstra algorithm, system will

be displayed about the information of routing table

(No, Network link and distance in miles). After

claculating A* algorithm, user can also view the

value of straight line distance to target waypoint and

shortest path tree. There, the optimal path of the

map can also be displayed for the method. The

system also displayed the network tree view of

source town to target town possible path and total

distance. In this tree view, user can use expand

facilities; expand current selected tree node and its

all child nodes.User can view the comparison of

processing time for these two algorithms (A* and

Dijkstra algorithms) as show in Figure.3.

View

Information

Modify ways

on map
Search

Choose target and

destination towns

on map

Searching by

A*

Algorithm

Searching by

Dijkstra

Algorithm

Compare

two algorithms

Add new town

name

Add connected

towns name,

distance,

 time and cost

Save to the

system

Spatial

Database

Start

End

5

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

E
la

p
s

e
d

 T
im

e
 in

m
ill

is
e

c
o

n
d

s

S earching A lgorithms

" A* Alg orithm is

fas ter than D ijks tra

Alg orithm "

S hortes t P ath Alg orithms

A* A lgorithm

D ijkstra A lgorithm

Figure 3. Comparison Graph for processing time.

The user can also set the location of the waypoint

on the chart by using the one left click. If the user

can type the waypoint’s name in the waypoint name

input box, these waypoint mark with waypoint name

or mark position. If the user wants to set any other

waypoint on the chart, the user can use the above

procedure step by step.

The system allowed the user to connect the

waypoints each other by the user’s desire and

calculate distance, time and cost. After creating the

chart completely, the user can see the preview of the

chart. Then, the chart can be confirmed from the

confirm button, and saved the chart in current chart

location by the use of save button.

7. Conclusion

The goal of this system was to explore

different design issues associated with map-based

itinerary-planning tools. In this way, a prototype

was demonstrated to use and modify existing tools

and software to create map-based finding shortest

path system for Sagaing Division.

This system use A* and Dijkstra algorithms in

the informed methods. A* algorithm expand node

with an evaluation function of the form

f(n)=g(n)+h(n), g(n) is the cost to reach the node

and h(n), estimated cost to the goal from n and f(n),

estimated total cost of path through n to the goal.

This search algorithm is both complete and optimal.

So A* algorithm is very suitable for this system.

Dijkstra algorithm is frequently desired to find the

shortest path between two nodes. It quickly finds the

shortest path from a chosen source to a given

destination. This is known as the single-source

shortest paths problem. In the process of finding all

shortest paths to all destinations, Dijkstra's

algorithm will also compute, as a side-effect, a

spanning tree for the graph. In fact, the algorithm is

so powerful that it finds all shortest paths from the

source to all destinations.

This system is used for two main portions

such as create and modified map, points and

distances, time and cost in map. And, the user can

search shortest path by using these two algorithms

on the chart and calculate distances between the

points. And also evaluate the comparison of

processing time.

8. References

[1] Vimalkumar A. Vaghani “Flood Impact Analysis using

GIS” A case study for Lake Roxen and Lake Glan-

Sweden”2005-06-08, ISRN: LIU-IDA-D20--05/016—SE

[2] Louis E.Frenzel, Jr. “Expert System and Applied

Artificial Intelligence”, California State University at

Long Beach

[3] Maggie , “Shortest Path Algorithms”, Johnson

CS103B, Handout #17

[4] Dechter, R, Pearl, J: "Generalized Best_First Search

Strategies and the Optimality of "A*", Journal of the

ACM,

[5] Stuart Russell. Peter Norvig, “Artificial Intelligence a

Modern Approach”, Second Edition, Prentice Hall Series

in Artificial Intelligence.

[6] Nils J.Nilsson, “Artificial Intelligence”, Stanford

University, Morgan Kaufmann Publishers, 1998.

[7] Emil Kelevedjiev, “Computational Approach for

Assessment of Critical Infrastructure in Network

Systems”, Institute of Mathematics and Informatics

Bulgarian Academy of Sciences.

[8] P. Biswas, P. K. Mishra and N. C. Mahanti ,

“Computational Efficiency of Optimized Shortest Path

Algorithms”, Department of Applied Mathematics, Birla

Institute of Technology, Mesra (India)

