
Remote Method Invocation Based on Personal Data Management System

(Other Rank of Army Unit)

Kyu Kyu Win, Mya Than Hnin

University of Computer Studies, Mandalay

layeikpyar6@gmail.com

Abstract

 This paper is intended to get transparent and

efficient object invocation in distributed personal

data management system. The system has used RMI

framework. Distributed Object-Oriented Architectu-

-re, Remote Reference Layer and Remote Interface

to develop distributed Personal Data Management

System. This paper is concerned with method

invocations that require the participation of

multiple units where distributed personal data

management system is located. A unit located at a

network computer is exploited to access transparent

remote method and require information from remote

server by using the middle layer, command server.

Keyword: Distributed Object-Oriented Architect-

ure, Remote Invocation, Remote Reference Layer,

Remote Interface

1. Introduction

 The key success of the distributed computing on

distributed architecture is the ability to reduce the

use of processing time and resources, produce a

better performance than the traditional computing.

A distributed system requires computations that are

running in different address spaces, practically on

different machines, must be able to communicate

between one machines to another. High-performance

computing applications so require the efficient

management of information and also the reusability,

efficient use of time and resources and the

portability of the applications in wide-area distributed

computing environments. Inexpensive machines

interconnected by high speed communication

networks are currently widely used for parallel

computation and as backend processing servers for a

growing number of commercial applications. Objects

with high reliability requirements should be placed

on machines with high estimated reliability.

Moreover object technology provides a uniform

mechanism for accessing local and remote resources

and reduces the complexity of

application of interactive applications.

This paper concerns an object/method invocation

between personal data management system that are

located in the three-tiered PDMS. In this system,

there are two kinds of entities: Local personal data

management process and COMMAND server. Local

personal data management process concerns with

running user interface, controlling the personal local

information and invoking remote method from

remote server via the COMMAND server.

The rest of this paper is structured as follows.

The Distributed Object Oriented Architecture

(DOOA) is expressed in section 2. In section 3,

Remote Method Invocation (RMI) is presented. RMI

based Personal Data Management System (PDMS)

Architecture and components of Personal Data

Management System (PDMS) are described in

section 4. Finally conclusion is presented in section

5.

2. Distributed object-oriented architect-

ure (DOOA)

 Distributed Object-Oriented Architecture

(DOOA) is rooted in distributed object-orientation

and clients can consume services by invoking

discreet object/method calls directly. It can be

defined as a way of designing and implementing

enterprise applications that deals with the

intercommunication of loosely coupled, coarse

grained (business level), reusable artifacts

(objects/services). Determining how to invoke these

objects should be through the object interfaces.

Distributed object-oriented architecture in which

new services and in some cases, new types of object

can be instantiated and immediately be made

available for invocation. It includes peer to peer

(P2P) architecture, client-server architecture, three-

tiered architecture, cluster architecture and grid

architecture. Advantages of the DOOA are

- Component reuse

- Less time & resources

- Less complexity

- Less storage space

Possible technologies to object invocation for

DOOA are sockets, remote procedure call, remote

method invocation, common object request broker

architecture, distributed component object model.

3. Remote method invocation (RMI)

 Remote method invocation (RMI), is a

mechanism for invoking an object's methods, even

though the object is executing on a foreign Java

Virtual Machine (JVM). RMI is similar to remote

procedure calls (RPCs), but has an added advantage

- method signatures can contain Java objects as well

as primitive data types. Even objects that a foreign

JVM has never encountered before can be used, so

new tasks and methods can be passed across a

network RMI provides the user with facilities to

make method calls remotely. RMI is transparent to

the local modules of the application. Thus, there

would be no difference between making a call to a

local method and making a remote method call to a

method on a remote machine using RMI. The user is

provided with the same interface by the underlying

layer [5].

3.1. RMI framework

 The RMI framework in Java allows distributed

application components to communicate via remote

object invocations. In particular, a client running at

one node can access a remote service by invoking a

method of the object that implements the service.

Thus, the RMI framework enables applications to

exploit distributed object technology rather than low

level message passing (e.g., sockets) to meet their

communication needs [2].

All objects that can be invoked remotely must

implement the interface Remote. This interface is

just a tag that is used to distinguish remote objects

from normal objects. Remote objects implement one

or more interfaces and only through these interfaces

they are visible to the outside world. The rmic tool is

used to generate the skeleton and stub classes for a

given remote object interface. For a given remote

object impl, the stub, impl_Stub, the skeleton,

impl_Skel, have the same set of methods that are

defined in the interface of impl. Impl provides the

actual implementations of the methods defined in its

interface [3].

A high level architecture of the RMI framework

is shown in Figure 1[2].

Figure 1. RMI framework

3.2. Object invocation in RMI

 The object that can receive remote invocations is

called remote objects. In Figure: 2, the objects B and

F are remote objects. All objects can receive local

invocations, although they can receive them only

from other objects that hold references to them. For

example, object C must have a reference to object E

so that it can invoke one of its methods.

Figure 2. Remote and local method invocation

3.3. Basic patterns in RMI

 Java RMI is comprised of three layers that

support the interface as shown in Figure 4. The first

layer is the Stub/Skeleton Layer. This layer is

responsible for managing the remote object interface

between the client and server.

The second layer is the remote Reference Layer

(RRL). This layer is responsible for managing the

“liveliness” of the remote objects. It also manages

the communication between the client/server and

virtual machines,(e.g., threading, garbage collection,

etc.) for remote objects.

The third layer is the transport layer. This is the

actual network/communication layer that is used to

 F

 C

 D

E

 B

D

A

 Remote

invocation

Remote

invocatio

n

Local

invocatio

n

send the information between the client and server

over the wire. It is currently TCP/IP based. RPC is a

UDP-based protocol which is fast but is stateless and

can lose packets. TCP is a higher-level protocol that

manages state and error correction automatically,

but is correspondingly slower than UDP [4]. The

architecture of RMI is shown in Figure 4 [1].

Figure 3. RMI architecture

4. RMI based PDMS architecture

 The PDMS system concerns the management of

personal data in the three-tiered distributed

environment. This system involves distributed units

located distant places and the number of units is

increasing day by day. Here, the efficient

management of these units is really needed. The

three-tiered architecture of RMI is shown in Figure

5.

Figure 4. Three-tiered architecture of RMI

It includes three layers:

Presentation layer- includes multiple distributed

applications which access the remote distributed

processes.

Business logic layer- includes business logic

components (e.g., middle manager/remote process

invoker) that manage the available access to the

remote process.

Data layer- includes heterogeneous processes of the

distributed databases.

Using this architecture, remote method invocation is

carried out as follow:

- RMI Client- looks up and fetches the remote

interface from the remote RMI Server. The

methods in the remote reference are available to

the client.

- Command Server- use global information of

 personal data and units to analyze authorized

process and invoke the required method from

the corresponding remote RMI Server.

- RMI Server-implement the remote interfaces

and registers them to the rmiregistry. By

running rmiregistry, create stubs and skeletons

that provide the network connection operations

and idle remote object as another local object

on local machine.

4.1. Architecture of PDMS

 The architecture of the system is scoped in the

three-tiered distributed architecture. In this system,

there are two kinds of entities: Local Personal Data

Management Process and Command server.

 Local Personal Data Management Process

(PDMS) is responsible for processing transactions.

Both local client and remote server have this process

and they maintain the local information of its

personal data. When local client requests local

transaction process, local PDMS processes local

transaction and updates the information of local

person. When local client requests remote

transaction process, local PDMS requests to the

COMMAND server by the use of RMI and returns

the response to the local client.

 The COMMAND server that is the essential

element in distributed three tiered architectural

system maintains the repository of global

information of local persons and processes of each

unit. When local PDMS makes request, it accepts

the request, and invokes to the remote server by the

use of RMI and then response to the local PDMS.

Client

Stubs

Server

Skeletons

Transport

Remote Reference Layer (RRL)
RMI

System

Transport

Presentation Layer

Application

Application

Application

Business Logic Layer

remote object

invoker Business

Logic

Components

Business

Logic

Components

Remote Object

Invoker

Data Layer

Database

Database

Database

 When Remote server receives the request of

COMMAND server, its PDMS processes the

requested transaction and updates the information of

its personal data and then returns the response to the

COMMAND server.

4.2. System design of PDMS

 In this system, local client’s PDMS concerns

with running user interface, managing the personal

local information and invoking remote method from

remote server (i.e. it is also Local process itself) by

using RMI.

Command Server
Interface

Unit B
Command

Post

Transaction
Process

Transaction
Process

Check Unit Code
&Transaction Process

Update

Request
(RMI)

Response
(RMI)

R
e
s
p
o
n
s
e

Update

Request or
Response
(RMI)

Update

Local
Database A

Main
Repository

Local
Database B

Request
for

Transaction

Response
(RMI)

Request or
Response
(RMI)

Unit A

Application

Site

Server Site

Request

(RMI)

Figure 6. System design of PDMS

Local client(unit A) –When the user chooses

Transaction process, local personal profile manager

accesses the name of specific person to process the

transaction and searches the name in the local

database. If the name is in the local database, local

Transaction process executes local process. If the

name is in the remote database, local Transaction

process requests to the COMMAND by the use of

RMI. If local client receives the response of

COMMAND, it updates its database.

 COMMAND-When the COMMAND receives the

request of local client; it searches the code of the

unit, checks the relevant information for the local

client from the repository and inserts a new record of

transaction in its repository. Then it requests the

remote Transaction process by using RMI. If it

receives the response of remote server, it returns to

the local client.

Remote server (unit B)- When the remote server

receives the COMMAND’S request, it executes its

local Transfer process and updates its database.

By setting the COMMAND site in this system, any

client can quick access the global information of any

person at any unit. This result also facilitates the

transparency of distributed systems. The distributed

remote method invocation allows this simplification

against traditional approaches that are forced

confusing as well as tedious and error-prone to

execute code on other machine across a network.

The input requests from local unit with relevant

information are accessed by the COMMAND. The

requests are possible either local or remote

object/method invocations.

4.3. Components of PDMS

The main components of PDMS are:

 Local client component

 Command server component

 Remote server component

During transaction processes of PDMS (such as

Transfer, Promotion, Demotion and Enquiry) all

these components perform personal data

management

process in parallel local site (for example unit server

1) and Remote Site (for example unit server 2)

contains their related Personal Data Manager table.

On the other hand, command site includes Letter

Manager table and Unit Data table.

. Code

. TranCode

. Tran Date

. Rank

. Name

. Description

. Unit Code

. Current Date

. Unit Code

. Unit Name

. Address

. Remote_Address

. Status

Unit Data Manager

Letter Manager

Command Server

Local client/Remote Server

. Code . Mother Unit

. Rank . Current Unit

. Name . Marital_Status

. Position . Remark

. DOB . Status

. Native

. DOE

Personal Data Manager

Figure 7. Database design of PDMS

At the end of transaction process, the user can see

the information in the corresponding unit’s server

and command’s server log window as shown in

figure 8 and 9.

Figure 8. Command’s server log window

Figure 9. Unit’s server log window

5. Conclusion

 The system is implemented to use the infantry

personal data management process in distributed

areas. The theory of Java's RMI (Remote Method

Invocation) is applied for the communication of

distributed system in this system. It is the effective

communication technique between JVMs

(JavaVirtual Machine). It is suitable for this kind of

application, PDMS on distributed architecture.

 This application is useful to the developers who

need to know only one programming language

(Java) to develop both client and server process

without having to worry about the underlined

operating system and hardware because Java/RMI is

platform independent. User can compose the

processes by

invoking the methods from the remote addressed

space transparently.

 Therefore, the PDMS system provides the

transparency of the possibility of concurrent access

to remote objects.

6. References

[1] A. Wllrath, R. Riggs, J. Waldo "Distributed Object

Model for the Java System" in the Proc of the USENIX

1996 Conference on Object-Oriented Technnlogies,

Toronto, Ontario, Canada, June 1996

[2] B. Tarr “Designs Patterns In Java”

[3] B.Topol, D.Walther, E. Bommaiab “Efficient

Implementation of Java Remote Method Invocation

(RMI)” in Proc. the 4th USENIX Conference on Object-

Oriented Technologies and Systems (COOTS) , Santafe,

New Mexico, Georgia Institute of Technology, April 27-

30,1998

[4] G.Coulouris, J Dollimore, T. Kinberg “Distributed

Systsems Concepts and Designs”, 0201-61918-0, Addison

Wesley 2001, 3rd edition

[5] Liu, Ni “Solution Distributed Computing Problem

using Remote Method Invocation(RMI)” Operating system

(5024),229-87-3341, Dec 3, 2000

