

Secured Document Exchange Using Digital Signature

Wai Zin Aung, Khin Than Mya

University of Computer Studies, Yangon, Myanmar

waizinaung85@gmail.com

Abstract

 Strong security notions often introduce strong

constraints on the construction of cryptographic

schemes: semantic security implies probabilistic

encryption, while the resistance to existential

forgeries requires redundancy in signature schemes.

Some padding has thus been designed in order to

provide these minimal requirements to each of them,

in order to achieve secure primitives. A common

practice to encrypt with RSA is to first apply a

padding scheme to the message and then to

exponentiate the result with the public exponent,

which is called OAEP (Optimal Asymmetric

Encryption Padding).This paper proposed this

notion of universal padding, OAEP, can also be

used the same RSA key-pairs for encryption and

decryption, in any trapdoor partial-domain one-way

permutation.

Keywords: Cryptography, RSA, OAEP, Message

padding, Digital Signature

1. Introduction

 Cryptography has a long and fascinating

history. The most complete non-technical account of

the subject is Kahn’s The Codebreakers. The book

traces cryptography from its initial and limited use

by the Egyptians some 4000 years ago, to the

twentieth century where it played a crucial role in

the outcome of both world wars. Completed in 1963,

Kahn’s book covers those aspects of the history

which were most significant (up to that time) to the

development of the subject. Cryptography was used

as a tool to protect national secrets and strategies.

In 1976, Diffie and Hellman [6] introduced the

concept of public key cryptography. In 1978 Rivest,

Shamir, and Adleman discovered the first practical

public-key encryption and signature scheme, now

referred to as RSA. The RSA scheme is based on

another hard mathematical problem, the

intractability of factoring large integers. This

application of a hard mathematical problem to

cryptography revitalized efforts to find more

efficient methods to factor.

In this paper, we propose a framework for

exchanging documents by applying Optimal

Asymmetric Encryption Padding (OAEP). The

sender send message by encrypting with OAEP by

using public key and digest the encrypted file with

secured hash algorithm (SHA-1). The receiver

receives encrypted file and signature. He/ She

decrypt this file with OAEP by using private key.

Furthermore, we analyze the security of these

paddings, to be used for both encryption and

signature with the same public/private key, where

the same primitive (trapdoor one-way permutation)

at the same time.

The rest of the paper is organized as follows. In

Section 2, we reviews related work and background

theory. We show the general architecture of the

proposed system in Section 3. Section 4 gives a

description of processing OAEP. Section 5 describes

experimental results of this system and section 6

draws some conclusion and future work.

2. Related Work and Background

 Cryptosystems are considered either weak or

strong with the main difference being the length of

the keys used by the system. U.S. export controls are

showing signs of loosening, but they continue to

discourage the export of strong cryptography

because of fears that government enemies will use

the systems to thwart eavesdropping on illegal or

anti-government activities. DES was originally

designed so that the supercomputers owned by the

National Security Agency (NSA) could be used for

cracking purposes, working under the premise that

no other supercomputers of their sort are in the

public hands or control.

Strong cryptography always produces ciphertext

that appears random to standard statistical tests.

Because keys are generated for uniqueness using

robust random number generators, the likelihood of

their discovery approaches zero. Rather than trying

to guess a key’s value, it’s far easier for would be

attackers to steal the key from where it’s stored, so

extra precautions must be taken to guard against

such thefts. Any cryptosystem that hasn’t been

subjected to brutal attacks should be considered

suspect. The recent announcement by the National

System (AES) to replace the aging DES system

underscores the lengths to which cryptographers will

go to build confidence in their cryptosystems.

Victor Shoup presented [7] a new scheme

OAEP+, along with a complete proof of security in

the random oracle model. OAEP+ is essentially just

efficient as OAEP, and even has a tighter security

reduction. He observes that appears to be a non-

trivial gap in the OAEP security proof and proves

that this gap cannot be filled; there can be no

standard “black box” security reduction for OAEP.

T.EIGamal [6] showed that the security of both

systems relies on the difficultly of computing

discrete logarithms over finite fields. These

estimates imply that the public file size is lager in

this scheme than in the RSA scheme, but the

difference is at most a factor of two due to the

structure of both schemes. Also the size of the

ciphertext text is double that of the RSA system. J.-

Sebastien Coron et al. [3] showed that PSS allows to

safety use the same RSA key-pairs for both

encryption and signature for nay trapdoor practical-

domain one-way permutation.

This system proposes the strong security of

cryptographic schemes. OAEP is used to the same

key-pairs with RSA for encryption and decryption in

secure in the random oracle model.

3. RSA Cryptosystem

The most common public-key algorithm is the

RSA cryptosystem, named for (Rivest, Shamir, and

Adleman). RSA uses two exponents, e and d, where

e is public and d is private. P is the plaintext and C

is the ciphertext. Encryption and decryption use

modular exponentiation. Modular exponentiation is

feasible in polynomial time using the fast

exponentiation algorithm. However, modular

logarithm is as hard as factoring the modulus, for

which there is no polynomial algorithm yet. In this

figure 1, Alice encrypts the message M using Bob’s

public key PA and transmits the resulting ciphertext

C to Bob. An eavesdropper who captures the

transmitted ciphertext gains no information about

M. Alice receives C and decrypts it using her secret

key to obtain the original message M.

Figure 1. Operations in RSA

3.1. Key Generation Procedure

 Bob uses the steps shown in figure 2, to create

his public and private key. After key generation, Bob

announces the tuple (e,n) as his public key, Bob

keeps the integer d as his private key. Bob can

discard p, q and (n). To be secure, the

recommended size for each prime or q is 512bits.

This makes the size of n, the modulus 1024 bits.

RSA_Key_Generation

{

1: select two large prime p and q such that

pq

2: npq

3: (n) (p-1)(q-1)

4: select e such that 1e(n) and e is coprime

to (n)

5: d e-1 mod (n)

6: Public_key (e,n)

7: Private_key d

8: return Public_key and Private_key

}

Figure 2. RSA key generation algorithm

3.2. Encryption Procedure

 Anyone can send a message to Bob using his

public key. Encryption in RSA can be done using an

algorithm with polynomial time complexity, as

shown in figure 3 and 4.The size of the plaintext

must be less than n, which means that if the size of

the plaintext is larger than n, it should be divided

into blocks.

RSA_Encryption (P,e,n)

{

1: C Fast_Exponentiation (P,e,n)

2: return C

}

Figure 3. RSA encryption

3.3. Decryption Procedure

 Bob can use figure 3, to decrypt the ciphertext

message he received. Decryption in RSA can be

done using an algorithm with polynomial time

complexity. The size of the ciphertext is less than n.

RSA_Decryption (C,d,n)

{

1: P Fast_Exponentiation (C,d,n)

2: return P

}

Figure 4. RSA decryption

 4. Implementation of the System Design

 In this paper, its system consists of two main

components, sender side and receiver side. In sender

side, the user selects any original document file to

send another user. After selecting document file,

RSA key is generated by using secure hash

algorithm (SHA-1) .When key file is obtained, this

original file is encrypted using OAEP with that key

(RSA public key) and compute hash value for that

encrypted file. And then, the user sends this

encrypted file and hash value to another user as

shown in figure 5.

Figure 5. Encryption of System Design

In receiver side as shown in figure 6, receiver

receives this encrypted file and hash value. Firstly,

the receiver computes hash value for encrypted file

and compared hash value with received hash value

from sender. If computed hash value is not equal

with received hash value, the receiver display “error

message” it means someone changed encrypted file,

so receiver reject this received encrypted file. If

equal, key and decryption process can proceed

continuously. To obtain original file, this encrypted

file is decrypted by using RSA private key. Finally,

receiver can get original file after decryption process

complete successfully.

Figure 6. Decryption of System Design

4.1. Optimal Asymmetric Encryption Padding

(OAEP)

 When instantiated with the RSA function goes

by the name RSA-OAEP and is the industry-wide

standard for RSA encryption. It has a better message

expansion rate. With RSA-OAEP, one can encrypt

messages whose bit length is up to just a few

hundred bits less than the number of bits in the RSA

modulus, a ciphertext whose size is the same as that

of the RSA modulus. The operation of OAEP

encryption and decryption is shown as figure 7.

Encryption:

 Message padded to m bits

 Random bits r generated to mask padded

message

 Run through hash function G

 XOR’d with padded message to

give P1

 Masked message used to mask the random

bits

 Masked message run through hash

function H

 XOR’d with random bits to give

P2

 Masked message and random bits (P1 and

P2) encrypted and sent

Decryption:

 Ciphertext decrypted to get masked

message and random bits (P1 and P2)

 Masked message P1 run through hash

function H and XOR’d with P2 to recover r

r run through hash function G and XOR’d with P1

to recover original padded plaintext

Figure 7. Sending and receiving of message using

OAEP

4.2. OAEP Message Padding

 OAEP encryption starts by encoding a seed, a

hash, padding octets and the secret into an octet

string. Masking operations effectively randomize

these octets before they are treated as the unsigned

binary representation of an integer-the integer used

in the RSA modular exponentiation operation. The

number of padding octets is chosen so that the

encoding consumes one less octet than required for

an unsigned binary representation of the modulus.

This ensures the integer is less than the modulus as

required in RSA. Alternatively, the encoded

messages can be considered as an octet string the

same length as the modulus, but with the most

significant octet set to `00'h.

Figure 8 shows the OAEP padding scheme.

OAEP achieved chosen ciphertext attack security

based on an almost mathematical proof relying on

the one-wayness of the RSA function. The

mathematical model is called random oracle model

which models G and H functions which return

random independent values.

Figure 8. OAEP Message Padding

4.3. Padding Algorithm of OAEP

The following algorithm shows the encrypting

algorithm. Sender uses the original message (m), a

random number (r) and two functions (G and H).

RSA_OAEP_Encrypt (m, e, n, r)

{

 M pad (m)

 P1 M G(r)

 P2 H(P1) r

 C Fast_Exponentiation (P1 | P2, e, n)

 return C

}

 The following algorithm shows the decrypting

algorithm. Receiver uses the ciphertext (C), the

private key (d), modulus (n), and two functions G

and H.

RSA_OAEP_Decrypt (C, d, n)

{

 P Fast_Exponentiation (C, d, n)

 P1, PSplitm, k (P)

 r H(P1) P2

 M P1 G(r)

 m Extract (M)

 return m

}

4.4 Algorithm of OAEP Cryptosystem

 We briefly describe the OAEP cryptosystem

(,,D) obtained from a permutation, whose inverse

is denoted by g. We need two hash functions G and

H:

 
00

00

}1,0{}1,0{:

}1,0{1,0:

kkk

kkk

H

andG









Then,

(1k): specifies an instance of the function, and of

its inverse g. The public key “pk” is therefore  and

the secret key “sk” is g.

 pk (m,r): given a message m  {0,1}n, and a

random value
0}1,0{ kRr , the encryption

algorithm pk computes

)()0||(1 rGms k  and)(sHrt 

and outputs the ciphertext c=(s, t).

 Dsk(c): thanks to the secret key, the decryption

algorithm Dsk extracts

(S, t)=g(c), and next r= tH(s) and

 M= sG(r)

If [M]k1=0k1, the algorithm returns [M]n,

otherwise it returns “Reject”., where [M]k1 denotes

the k1 least significant bits of M, while [M]n denotes

the n most significant bits of M.

5. Evaluation Result

 In this paper, OAEP proposed a novel trapdoor

one way permutation. The trapdoor one-way

permutation defines a simple public key encryption

system is generated by the public key and the

trapdoor is the private key. OAEP has efficiency in

both time and message expansion, and its

compatibility with more traditional implementation

of RSA encryption. This system is implemented

using C# programming language and it was tested in

Notebook PC with Intel® Core™2 Duo CPU

2.00GHz and 2GB of RAM.

OAEP is so popular is the widespread belief that

the scheme is secure in the random oracle model,

provided the underlying trapdoor permutation

scheme is one way. OAEP can be used to encrypt

long messages. The corresponding OAEP-based

encryption scheme is plaintext-aware, meaning

roughly that an adversary cannot produce a valid

ciphertext without actually "knowing" the

underlying plaintext. Plaintext awareness of an

encryption scheme is closely related to the resistance

of the scheme against chosen ciphertext attacks. In

this Table 1 shown in runtime of encryption and

decryption in various was testing document size.

Table 1. Runtime of Encryption and Decryption

Size

(KB)

Encryption

Time (ms)

Decryption Time

(ms)

10 56 66

20 172 313

40 265 430

60 483 476

80 530 638

In this Figure 9 and 10 is shown in

encryption and decryption time for various testing

document size.

Figure 9. Encryption Time of various document

sizes

Figure 10. Decryption Time of various document

sizes

6. Conclusion

 Cryptography is concerned with keeping

communications private. This system is tested with

various document size such as .txt, .doc, etc. The

sender cannot know whether the sending data is

received by the receiver or not. So additional

recovery and reliability features can be added for

more completing the system’s performance.

Currently, this system padded messages by applying

OAEP, and then extend to use others universal

padding scheme. This system can extend to encrypt

image files. This system can extend to run different

machines such as sender site and receiver site. It is

the science of writing in secret code and provides the

basics for authentication of messages as well as their

security and integrity. Asymmetric cryptosystems

use one key (public-key) to encrypt a message and a

different key (private-key) to decrypt it. OAEP,

message padding which could apply for both

encryption and decryption. Our conclusion is that

one can still trust the security of RSA-OAEP, but the

reduction is more costly than the original one.

However, for other OAEP applications, more care is

needed, since the security does not actually rely on

the one-wayness of permutation, only on its partial-

domain one-wayness.

References

[1] A. B. Forouzan, Cryptography and Network

Security, International Edition , 2008.

[2] B. Chevallier-Mames, D. Hieu Phan and D.

Pointcheval, “Optimal Asymmetric Encryption and

Signature Paddings”, Proceedings of the Conference on

Applied Cryptography and Network Security (ACNS ’05)

(6 – 10 june 2005, New York, USA)

[3] D. Naccache, M. oye, J. -S. Coron and P. Paillier.

“Universal Padding Schemes for RSA”, In M. Yung,

editor, Advance in Cryptograhy, 2002.

[4] J. Stren, “ Cryptography and the Methodology of

Provable Security”, ENS-CNRS, 45rue d’Ulm, 75230 pris

CEdex 05, France.

[5] M. Bellare and P. Rogaway, “Optimal Asymmetric

Encryption”, Proceedings of Eurocrypt’94, LNCS vol.

950, Springer-Verlag, 1994, pp.92-111.

[6] T. EIGamal, “A Public Key Cryptosystem And a

Signature Scheme based on Discrete logarithms”,

Proceedings of Eurocrypt ’94, LNCS vol. 950, Springer-

Verlag, 1998.

[7] V. Shoup, “OAEP Reconsidered”, Proceedings of

Crypto 2001, LNCS vol 2139, pp 239-259, 2001.

September 18, 2001.

[8] W. Diffie and M. Hellman, “New Directions in

Cryptography”, IEEE Transactions on Information Theory,

IT-22 (1978), 472-492.

