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Abstract 
         

        Strong security notions often introduce strong 

constraints on the construction of cryptographic 

schemes: semantic security implies probabilistic 

encryption, while the resistance to existential 

forgeries requires redundancy in signature schemes. 

Some padding has thus been designed in order to 

provide these minimal requirements to each of them, 

in order to achieve secure primitives. A common 

practice to encrypt with RSA is to first apply a 

padding scheme to the message and then to 

exponentiate the result with the public exponent, 

which is called OAEP (Optimal Asymmetric 

Encryption Padding).This paper proposed this 

notion of universal padding, OAEP, can also be 

used the same RSA key-pairs for encryption and 

decryption, in any trapdoor partial-domain one-way 

permutation. 
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1. Introduction 
 

 Cryptography has a long and fascinating 

history. The most complete non-technical account of 

the subject is Kahn’s The Codebreakers. The book 

traces cryptography from its initial and limited use 

by the Egyptians some 4000 years ago, to the 

twentieth century where it played a crucial role in 

the outcome of both world wars. Completed in 1963, 

Kahn’s book covers those aspects of the history 

which were most significant (up to that time) to the 

development of the subject. Cryptography was used 

as a tool to protect national secrets and strategies. 

In 1976, Diffie and Hellman [6] introduced the 

concept of public key cryptography. In 1978 Rivest, 

Shamir, and Adleman discovered the first practical 

public-key encryption and signature scheme, now 

referred to as RSA. The RSA scheme is based on 

another hard mathematical problem, the 

intractability of factoring large integers. This 

application of a hard mathematical problem to 

cryptography revitalized efforts to find more 

efficient methods to factor.  

In this paper, we propose a framework for 

exchanging documents by applying Optimal 

Asymmetric Encryption Padding (OAEP). The 

sender send message by encrypting with OAEP by 

using public key and digest the encrypted file with 

secured hash algorithm (SHA-1). The receiver 

receives encrypted file and signature. He/ She 

decrypt this file with OAEP by using private key. 

Furthermore, we analyze the security of these 

paddings, to be used for both encryption and 

signature with the same public/private key, where 

the same primitive (trapdoor one-way permutation) 

at the same time. 

The rest of the paper is organized as follows. In 

Section 2, we reviews related work and background 

theory. We show the general architecture of the 

proposed system in Section 3. Section 4 gives a 

description of processing OAEP. Section 5 describes 

experimental results of this system and section 6 

draws some conclusion and future work. 

 

2. Related Work and Background 

 
         Cryptosystems are considered either weak or 

strong with the main difference being the length of 

the keys used by the system. U.S. export controls are 

showing signs of loosening, but they continue to 

discourage the export of strong cryptography 

because of fears that government enemies will use 

the systems to thwart eavesdropping on illegal or 

anti-government activities. DES was originally 

designed so that the supercomputers owned by the 

National Security Agency (NSA) could be used for 

cracking purposes, working under the premise that 

no other supercomputers of their sort are in the 

public hands or control. 

Strong cryptography always produces ciphertext 

that appears random to standard statistical tests. 

Because keys are generated for uniqueness using 

robust random number generators, the likelihood of 

their discovery approaches zero. Rather than trying 

to guess a key’s value, it’s far easier for would be 

attackers to steal the key from where it’s stored, so 

extra precautions must be taken to guard against 

such thefts. Any cryptosystem that hasn’t been 

subjected to brutal attacks should be considered 

suspect. The recent announcement by the National 



 

 

System (AES) to replace the aging DES system 

underscores the lengths to which cryptographers will 

go to build confidence in their cryptosystems. 

Victor Shoup presented [7] a new scheme 

OAEP+, along with a complete proof of security in 

the random oracle model. OAEP+ is essentially just 

efficient as OAEP, and even has a tighter security 

reduction. He observes that appears to be a non-

trivial gap in the OAEP security proof and proves 

that this gap cannot be filled; there can be no 

standard “black box” security reduction for OAEP. 

T.EIGamal [6] showed that the security of both 

systems relies on the difficultly of computing 

discrete logarithms over finite fields. These 

estimates imply that the public file size is lager in 

this scheme than in the RSA scheme, but the 

difference is at most a factor of two due to the 

structure of both schemes. Also the size of the 

ciphertext text is double that of the RSA system. J.-

Sebastien Coron et al. [3] showed that PSS allows to 

safety use the same RSA key-pairs for both 

encryption and signature for nay trapdoor practical-

domain one-way permutation. 

This system proposes the strong security of 

cryptographic schemes. OAEP is used to the same 

key-pairs with RSA for encryption and decryption in 

secure in the random oracle model. 

3. RSA Cryptosystem 

The most common public-key algorithm is the 

RSA cryptosystem, named for (Rivest, Shamir, and 

Adleman). RSA uses two exponents, e and d, where 

e is public and d is private. P is the plaintext and C 

is the ciphertext. Encryption and decryption use 

modular exponentiation. Modular exponentiation is 

feasible in polynomial time using the fast 

exponentiation algorithm. However, modular 

logarithm is as hard as factoring the modulus, for 

which there is no polynomial algorithm yet. In this 

figure 1, Alice encrypts the message M using Bob’s 

public key PA and transmits the resulting ciphertext 

C to Bob. An eavesdropper who captures the 

transmitted ciphertext gains no information about 

M. Alice receives C and decrypts it using her secret 

key to obtain the original message M. 

 
Figure 1.  Operations in RSA 

 

3.1. Key Generation Procedure 

 

        Bob uses the steps shown in figure 2, to create 

his public and private key. After key generation, Bob 

announces the tuple (e,n) as his public key, Bob 

keeps the integer d as his private key. Bob can 

discard p, q and (n). To be secure, the 

recommended size for each prime or q is 512bits. 

This makes the size of n, the modulus 1024 bits. 

RSA_Key_Generation 

{ 

1:  select two large prime p and q such that 

pq 

2: npq 

3: (n) (p-1)(q-1) 

4: select e such that 1e(n) and e is coprime 

to (n) 

5: d e-1 mod (n) 

6: Public_key (e,n) 

7: Private_key d 

8: return Public_key and Private_key 

} 

Figure 2.  RSA key generation algorithm 

 

3.2. Encryption Procedure 
 

        Anyone can send a message to Bob using his 

public key. Encryption in RSA can be done using an 

algorithm with polynomial time complexity, as 

shown in figure 3 and 4.The size of the plaintext 

must be less than n, which means that if the size of 

the plaintext is larger than n, it should be divided 

into blocks. 

RSA_Encryption (P,e,n) 

{ 

1:  C Fast_Exponentiation (P,e,n) 

2:  return C 

} 

Figure 3.  RSA encryption 

 

3.3. Decryption Procedure 
 

        Bob can use figure 3, to decrypt the ciphertext 

message he received. Decryption in RSA can be 

done using an algorithm with polynomial time 

complexity. The size of the ciphertext is less than n. 

RSA_Decryption (C,d,n) 

{ 

1:  P Fast_Exponentiation (C,d,n) 

2:  return P 

} 

Figure 4.  RSA decryption 

 

 4. Implementation of the System Design 
 

        In this paper, its system consists of two main 

components, sender side and receiver side. In sender 

side, the user selects any original document file to 



 

 

send another user. After selecting document file, 

RSA key is generated by using secure hash 

algorithm (SHA-1) .When key file is obtained, this 

original file is encrypted using OAEP with that key 

(RSA public key) and compute hash value for that 

encrypted file. And then, the user sends this 

encrypted file and hash value to another user as 

shown in figure 5. 

 
Figure 5.  Encryption of System Design 

 

In receiver side as shown in figure 6, receiver 

receives this encrypted file and hash value. Firstly, 

the receiver computes hash value for encrypted file 

and compared hash value with received hash value 

from sender. If computed hash value is not equal 

with received hash value, the receiver display “error 

message” it means someone changed encrypted file, 

so receiver reject this received encrypted file. If 

equal, key and decryption process can proceed 

continuously. To obtain original file, this encrypted 

file is decrypted by using RSA private key. Finally, 

receiver can get original file after decryption process 

complete successfully. 

 
 

Figure 6.  Decryption of System Design 
 

4.1. Optimal Asymmetric Encryption Padding          

(OAEP)   
       
        When instantiated with the RSA function goes 

by the name RSA-OAEP and is the industry-wide 

standard for RSA encryption. It has a better message 

expansion rate. With RSA-OAEP, one can encrypt 

messages whose bit length is up to just a few 

hundred bits less than the number of bits in the RSA 

modulus, a ciphertext whose size is the same as that 

of the RSA modulus. The operation of OAEP 

encryption and decryption is shown as figure 7. 

Encryption: 

 Message padded to m bits 

 Random bits r generated to mask padded 

message 

 Run through hash function G 

 XOR’d with padded message to 

give P1 

 Masked message used to mask the random 

bits 

 Masked message run through hash 

function H 

 XOR’d with random bits to give 

P2 

 Masked message and random bits (P1 and 

P2) encrypted and sent 

Decryption: 

 Ciphertext decrypted to get masked 

message and random bits (P1 and P2) 

 Masked message P1 run through hash 

function H and XOR’d with P2 to recover r  

r run through hash function G and XOR’d with P1 

to recover original padded plaintext 

 

 
 

Figure 7. Sending and receiving of message using      

OAEP 

 

4.2. OAEP Message Padding 
 

        OAEP encryption starts by encoding a seed, a 

hash, padding octets and the secret into an octet 

string. Masking operations effectively randomize 

these octets before they are treated as the unsigned 

binary representation of an integer-the integer used 



 

 

in the RSA modular exponentiation operation. The 

number of padding octets is chosen so that the 

encoding consumes one less octet than required for 

an unsigned binary representation of the modulus. 

This ensures the integer is less than the modulus as 

required in RSA. Alternatively, the encoded 

messages can be considered as an octet string the 

same length as the modulus, but with the most 

significant octet set to `00'h. 

Figure 8 shows the OAEP padding scheme. 

OAEP achieved chosen ciphertext attack security 

based on an almost mathematical proof relying on 

the one-wayness of the RSA function. The 

mathematical model is called random oracle model 

which models G and H functions which return 

random independent values. 
 

 
 

Figure 8. OAEP Message Padding 
 

4.3. Padding Algorithm of OAEP 
 

The following algorithm shows the encrypting 

algorithm. Sender uses the original message (m), a 

random number (r) and two functions (G and H). 
 

RSA_OAEP_Encrypt (m, e, n, r) 

{ 

 M pad (m) 

 P1 M G(r) 

 P2 H(P1) r 

 C  Fast_Exponentiation (P1 | P2, e, n) 

 return C 

} 
 

        The following algorithm shows the decrypting 

algorithm. Receiver uses the ciphertext (C), the 

private key (d), modulus (n), and two functions G 

and H. 
 

RSA_OAEP_Decrypt (C, d, n) 

{ 

 P Fast_Exponentiation (C, d, n) 

 P1, PSplitm, k (P) 

 r   H(P1) P2 

 M P1 G(r) 

 m Extract (M) 

 return m 

} 
 

4.4  Algorithm of OAEP Cryptosystem 
 

        We briefly describe the OAEP cryptosystem 

(,,D) obtained from a permutation, whose inverse 

is denoted by g. We need two hash functions G and 

H: 

 
00

00

}1,0{}1,0{:

}1,0{1,0:

kkk

kkk

H

andG









 

Then,  

(1k): specifies an instance of the function, and of 

its inverse g. The public key “pk” is therefore  and 

the secret key “sk” is g. 

 pk (m,r): given a message m  {0,1}n, and a 

random value 
0}1,0{ kRr , the encryption 

algorithm pk computes 

 )()0||( 1 rGms k  and )(sHrt   

and outputs the ciphertext c=(s, t). 

 Dsk(c): thanks to the secret key, the decryption 

algorithm Dsk extracts 

(S, t)=g(c), and next r= tH(s) and 

  M= sG(r) 

If [M]k1=0k1, the algorithm returns [M]n, 

otherwise it returns “Reject”., where [M]k1 denotes 

the k1 least significant bits of M, while [M]n denotes 

the n most significant bits of M. 
 

5. Evaluation Result 
 

        In this paper, OAEP proposed a novel trapdoor 

one way permutation. The trapdoor one-way 

permutation defines a simple public key encryption 

system is generated by the public key and the 

trapdoor is the private key. OAEP has efficiency in 

both time and message expansion, and its 

compatibility with more traditional implementation 

of RSA encryption. This system is implemented 

using C# programming language and it was tested in   

Notebook PC with Intel® Core™2 Duo CPU 

2.00GHz and 2GB of RAM.   

OAEP is so popular is the widespread belief that 

the scheme is secure in the random oracle model, 

provided the underlying trapdoor permutation 

scheme is one way. OAEP can be used to encrypt 

long messages. The corresponding OAEP-based 

encryption scheme is plaintext-aware, meaning 

roughly that an adversary cannot produce a valid 

ciphertext without actually "knowing" the 

underlying plaintext. Plaintext awareness of an 

encryption scheme is closely related to the resistance 

of the scheme against chosen ciphertext attacks. In 

this Table 1 shown in runtime of encryption and 

decryption in various was testing document size.  
 

Table 1.  Runtime of Encryption and Decryption 

 



 

 

Size 

(KB) 

Encryption 

Time (ms) 

Decryption Time 

(ms) 

10 56 66 

20 172 313 

40 265 430 

60 483            476 

80 530 638 

 

In this Figure 9 and 10 is shown in 

encryption and decryption time for various testing 

document size. 

 

  
 

Figure 9. Encryption Time of various document 

sizes 

 

 
 

Figure 10. Decryption Time of various document 

sizes 

 

6. Conclusion  
        

         Cryptography is concerned with keeping 

communications private. This system is tested with 

various document size such as .txt, .doc, etc. The 

sender cannot know whether the sending data is 

received by the receiver or not. So additional 

recovery and reliability features can be added for 

more completing the system’s performance. 

Currently, this system padded messages by applying 

OAEP, and then extend to use others universal 

padding scheme. This system can extend to encrypt 

image files. This system can extend to run different 

machines such as sender site and receiver site. It is 

the science of writing in secret code and provides the 

basics for authentication of messages as well as their 

security and integrity. Asymmetric cryptosystems 

use one key (public-key) to encrypt a message and a 

different key (private-key) to decrypt it. OAEP, 

message padding which could apply for both 

encryption and decryption. Our conclusion is that 

one can still trust the security of RSA-OAEP, but the 

reduction is more costly than the original one. 

However, for other OAEP applications, more care is 

needed, since the security does not actually rely on 

the one-wayness of permutation, only on its partial-

domain one-wayness. 
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