

1

Deployment of Concurrency Control in Car Ticket Reservation System

Ei Mon Thandar Wint

University of Computer Studies (Mandalay)

eimonthandar@gmail.com

Abstract

Nowadays, database system technology is often

used for handling information needed to be

concurrently processed. The ability to support security

control on the existing data is an important

requirement in the database system. Thus, this paper is

intended to study the concurrency control of the

database system, especially on Two-Phase Locking

Technique. This technique represented with an

algorithm prevents conflicts among large amount of

data in an application area, Car Ticket Reservation

System. This implemented system is to provide the
selling system through network as client/server model

and each client is held by a user who is responsible for

ticket selling function. The PHP programming

language, Apache web server and MySQL database are

used in this system.

1. Introduction

Concurrency control is the activity of coordinating

concurrent accesses to a database in a multi-user

database management system (DBMS). Concurrency

control permits users to access a database in a multi-

programmed fashion while preserving the illusion that
each user is executing alone on a dedicated system. The

main technical difficulty in attaining this goal is to

prevent database updates performed by one user from

interfering with database retrievals and updates

performed by another. In other words, executed

transactions in DBMS should follow the ACID rules,

as described in next section.

Concurrency control has been actively investigated

for the past several years, and the problem for non-

distributed DBMS is well understood. A broad

mathematical theory has been developed to analyze the
problem, and one approach, called two-phase locking,

has been accepted as a standard solution. Current

research on non-distributed concurrency control is

focused on evolutionary improvements to two-phase

locking, detailed performance analysis and

optimization. The remaining sections of this paper are
organized as follows. Section 2 will discuss related

work. Section 3 describes concurrency control and the

design and control flow of the system are presented in

Section 4. Lastly, section 5 will conclude this paper.

2. Related Work

Efficient concurrency control protocols are required

in order for it to be possible to schedule database
transactions so as to satisfy both constraints and data

consistency requirements.
Partha Dasgupta has presented a locking protocol

that uses an unconventional locking strategy and

knowledge about the read and writes sets of the

transactions to allow non-two-phase locking on a

general database. In fact, the simplicity and elegance of

the two-phase locking protocols are their major

attractions [1].
Stankovic andZhao[7] proposed several access

methods for soft real-time transactions. The methods
attempt to make scheduling decisions based on the real

time criticalness of the transactions. She et al. [6]

presented a concurrency control protocol, called

‘priority ceiling’, which prevents blocking deadlocks

and attempts to minimize the blocking time of a high

priority real-time transaction blocked by a lower

priority transaction. The first attempt to evaluate the

performance of such scheduling algorithms was

provided by Abbott and Garcia-Molina [2], [3]. They

described a group of lock-based algorithms for

scheduling soft real-time transactions, and evaluated

the algorithms through simulation. Huang et al. [5]
developed and evaluated several algorithms for

handling CPU scheduling, data conflict resolution,

deadlock resolution, transaction wakeup, and

transaction restart, Their evaluations were carried out

on a tested system. Haritsa et al. [3] studied, on a

simulation model, the relative performance of two well

known classes of concurrency control algorithms

(locking protocols and optimistic techniques) in a real-

time database system environment. They presented and

evaluated a new real-time optimistic concurrency

control protocol through simulations in [4].

mailto:eimonthandar@gmail.com

 2

3. Concurrency Control

There are basically three generic approaches that can

be used to design concurrency control algorithms. The
synchronization can be accomplished by utilizing:

_Wait: If two transactions conflict, conflicting
actions of one transaction must wait until the actions of
the other transactions are completed.

_Timestamp: The order in which transactions are
executed is selected based on a time stamp. Each

transaction is assigned a unique timestamp by the system
and conflicting actions of two transactions are processed

in timestamp order. The time stamp may be assigned in
the beginning, middle or end of the execution. Version-

based approaches assign time stamps to database objects.

_Rollback: If two transactions conflict, some
actions of a transaction are undone or rolled back or else

one of the transactions is restarted. This approach is also
called optimistic because it is expected that conflicts are

such that only a few transactions would rollback.

In order to avoid the concurrency control problems,

ACID properties need to be satisfied after every

transaction in DBMS [8].

3.1 Transaction ACID Properties

The ACID properties are so called according to the

start letter of the following properties.

Atomicity - Either the effects of all or none of its

operations remain when a transaction is completed - in

other words, to the outside world the transaction

appears to be indivisible, atomic.
Consistency - Every transaction must leave the

database in a consistent state.

Isolation - Transactions cannot interfere with each

other. Providing isolation is the main goal of

concurrency control.

Durability - Successful transactions must persist

through crashes.

3.2. Optimistic Algorithm

Optimistic concurrency control, (OCC) is a

concurrency control method used in relational

databases without using locking. It is commonly

referred to as optimistic locking, a reference to the

non-exclusive locks that are created on the database.

Optimistic concurrency control is based on the

assumption that most database transactions don't

conflict with other transactions, allowing OCC to be as

permissive as possible in allowing transactions to
execute.

There are three phases in an OCC transaction:

1. Read: The client reads values from the

database, storing them to a private sandbox or

cache that the client can then edit.

2. Validate: When the client has completed

editing of the values in its sandbox or cache,

it initiates the storage of the changes back to

the database. During validation, an algorithm

checks if the changes to the data would

conflict with either

o already-committed transactions in

the case of backward validation

schemes, or

o currently executing transactions in
the case of forward validation

schemes.

If a conflict exists, a conflict resolution

algorithm must be used to resolve the conflict

somehow (ideally by minimizing the number

of changes made by the user) or, as a last

resort, the entire transaction can be aborted

(resulting in the loss of all changes made by

the user).

3. Write: If there is no possibility of conflict,

the transaction commits.

When conflicts are rare, validation can be done
efficiently, leading to higher throughput than other

concurrency control methods. However, if conflicts

happen often, the cost of repeatedly restarting

transactions hurts performance significantly — other

non-lock concurrency control methods have better

performance when there are many conflicts.
In the following section, we discuss Two-Phase

Locking Protocol and describe the concurrency control

algorithm that is based on it.

3.3. Two-Phase Locking Algorithm

Two-phase locking (2PL) synchronizes reads and

writes by explicitly detecting and preventing conflicts

between concurrent operations. Before reading data

item x, a transaction must "own" a readlock on x.

Before writing into x, it must "own" a writelock on x.
The ownership of locks is governed by two rules: (1)
different transactions cannot simultaneously own

conflicting locks; and (2) once a transaction

surrenders ownership of a lock, it may never obtain

additional locks.

The definition of conflicting lock depends on the

type of synchronization being performed: for rw

synchronization two locks conflict if (a) both are locks

on the same data item, and (b) one is a readlock and

the other is a writelock; for ww synchronization two

locks conflict if (a) both are locks on the same data

item, and (b) both are writelocks.

The second lock ownership rule causes every

transaction to obtain locks in a twophase manner.

During the growing phase the transaction obtains

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/Atomic_%28computer_science%29
http://en.wikipedia.org/wiki/Database_Consistency_%28computer_science%29
http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/w/index.php?title=Consistent_state&action=edit&redlink=1
http://en.wikipedia.org/wiki/Isolation_%28computer_science%29
http://en.wikipedia.org/wiki/Durability_%28computer_science%29
http://en.wikipedia.org/wiki/Crash_%28computing%29
http://en.wikipedia.org/wiki/Concurrency_control
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Relational_database
http://en.wikipedia.org/wiki/Lock_%28computer_science%29
http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/wiki/Non-lock_concurrency_control

 3

locks without releasing any locks. By releasing a lock

the transaction enters the shrinking phase. During this

phase the transaction releases locks, and, by rule 2, is

prohibited from obtaining additional locks. When the

transaction terminates (or aborts), all remaining locks

are automatically released.

A common variation is to require that transactions

obtain all locks before beginning their main execution.

This variation is called predeclaration. Some systems

also require that transactions hold all locks until

termination.

Algorithm that based on two-phase locking is

described in below.

3.4 Algorithm for Car Ticket Reservation

System Based on Two-Phase Locking Protocol

When two transactions try to read the available, only
one transaction must have got the chance to write it. To

implement this, the system can provide lock on the
database entity. Transactions can get a lock on an entity

from the system, keep it as long as the particular entity is
begin operated upon, and then give the lock back. If a

transaction requests the system for a lock on an entity,

and the lock has been given to some other transaction, the
requesting transaction must lose at that time. If these

transaction is not committed any reason, lock is released
by the system. After a transaction has finished operations

on an entity, the transaction can do an unlock operation.
 It is important to note that lock and unlock operations

can be embedded in a transaction by the user or be
transparent to the transaction. In the later case, the system

takes the responsibility of correctly granting and
enforcing lock and unlocks operations for each

transaction.
Basing on the two-phase locking mechanism, the

modified version of algorithm for car ticket reservation
system is described below.

 begin

Label A;

 user input event;
 check lock with parameters fields (seat no,

bus no and date)

 if lock = null,

 generate lock;

 write lock to table;

 hold lock;

 if(customer_data = true);

 confirm sell;

 processing the ticket;

 release lock;

 else

 release lock;
 end if;

 else if(want another ticket)

 Go to label A;

 end if;

end if;

 end

Suppose T1 has locked for a seat. If T2 try to lock

the same seat, T2 will conflict with T1. In this case, T2

will be rolled-back, i.e. ‘not available’ message will be
sent back. Therefore, the transaction which may cause

a deadlock will always be rolled-back according to the

above algorithm.

4. Design and Flow of the System

In our system, we emphasize the client/server

architecture. We have several nodes representing the

clients these are connected to the apache web server

hosting the MySql database through the network. The

system also provides the authorized user who is

responsible for concerning with the car ticket

reservation.

Figure 1: Architecture of the Car Ticket

Reservation System

4.1. Flow of the System

After studying several concurrency control

algorithms, modified version of one of these

algorithms is used in car ticket reservation system as a

 4

case study. The system design of this system is as

follow.

Start

Read a seat-no from

customer

Send the request to

Server

Receive result from

Server

Is it available
Does customer want

another?

Update the database

Reply the result to user

End

Receive request from

Client

Send ‘not available’

result back to Client

Car

Ticket

Database

Server

Check

requested seat

is locked or

not?

Lock and send

‘available’ back to

Client

No

Yes

No

Yes

Figure 2: Flow of the System

In the figure 2, the user is allowed to input the

name and password into the system. The system must

then check whether this login user is authorized one or

not. After that, information of customer is accepted by

this success user and is sent to the server in order to

operate on these data. The system updates the database

and also gives result back to the user when the

requested ticket is available.

4.2 Sequence Diagram of the System

In order to well understand how the system

operates the car ticket selling process, the sequence
diagram of the system is described as follow.

Figure 3: Sequence Diagram of the System

In this figure 3, the customer requests a seat to
seller (user). The seller finds the seat by using

lookUpSeat() and CheckLock(). CheckLock() replies

available or not to seller. If the seat is available, the

seller locks the seat with Lock(s,b,d) in which s means

seat no, b is bus no and d means date. And then he/she

requests data from customer. The customer gives data

to seller. By using these data the seller sell(s,b,d) the

ticket. Finally the seller gives the ticket to customer.

5. Conclusion

This paper presents the concept of concurrency

control. It emphasizes the study of various

concurrency control algorithms to develop a system

based on one of these techniques. Then in order to

demonstrate one of the concurrency control techniques

in a simple application, the car ticket reservation

system has been developed by using PHP Script

language, Apache Web Server and MySQL database.

By using this system, the available tickets can be
easily accessed among multiple clients on a network

without conflicts. Although this system has been

developed based on Two-Phase Locking Protocol,

which still have deadlock, the presented algorithm can

solve this deadlock problem. As in general, this

algorithm is only for this car ticket reservation system

by reducing the deadlock problems.

 5

REFERENCES

[1] The Five Color Concurrency Control Protocol: Non-
Two-Phase Locking in General Databases

[2] R. Abbott, H .Garcia-Molina ‘Schedulin RealTime
Transactions: A Performance Eva fuation’, lJth Int. Conf. on
Very Large Data Bases, 1988, pp.1-12.

[3]R. Abbott, H.Garcia-Molina ‘Scheduling Real- Time
Transactions with Disk Resident Data’, 15th Int. Conf. on
Very Large Data Bases, 1989, pp.385-396.

[4]J .R.Haritsa, M. J. Carey, M. Livny ‘On Being Optimistic
About Real-Time Constraints’, ACM SIGACT-SIGMOD-
SIGART, 1990, pp.331-343.

[5] J ,R.Haritsa, M.J .Carey, M.Livny ‘Dynamic Real- Time
Optimistic Concurrency Control’, llth Real- Time Systems
Symposium, 1990, pp.94-103.

[6] J .Huang et al. ‘Experimental Evaluation of Real- Time
Transaction Processing’, 10ih Real-Time Systems
Symposium, 1989, pp. 144-153.

[7]L.Sha, R. Rajkumar, J .Lehoczky ‘Concurrency Control
for Distributed Real-Time Databases’, ACM SIGMOD
Record, March 1988, pp.82-98.

[8]http://en.wikipedia.org/wiki/Optimistic_concurrency_cont
rol

