
Identifying Abbreviation and Its Definition From Text String By Using

LCS Algorithm

Khin Myo Han, Tin Tin Thein

Computer University (Mandalay)
khinmyohann@gmail.com

ABSTRACT

 The understanding of abbreviations, widely

used in writing is an important role for natural

language processing (NLP) applications. Many

abbreviations are followed a predictable pattern in

which the first letter of each word in the definition

corresponds to one letter in the abbreviation.

Abbreviations detection is an important task of the

dictionary building with their definitions. In this

system, abbreviation and their definitions are

implemented by using Longest Common

Subsequence (LCS) algorithm. Additionally, this

system is provided a method, pattern based rule

together with the LCS algorithm. Thus, the

simplicity of how abbreviations are formed from

their definition is also described in this system. As a

result, the extracted abbreviations are created into

a large update database, a dictionary about

computer literature. This system is implemented by

C# programming language.

1. INTRODUCTION

 Many organizations have a large number of on-

line documents such as manual, technical reports,

transcriptions of customer service call or telephone

conferences and electronic mail which contain

information of great potential value. To work on

automatic glossary extraction, technical documents

contain a lot of abbreviation terms, which carry

important knowledge about the domains. Every

content domain has its own acronyms and

abbreviations. It is needed to be able to create

common glossaries of domain-specific names and

terms in order to utilize the knowledge on these data

contain. Many acronym and abbreviation

dictionaries are available, both in printed from and

on the World Wide Web.

 Today, rapid growth of the computer literature

presents special challenges for both human and

automatic algorithms. Understanding computer

literature is particularly challenging due to its

expanding vocabulary, including the unfettered

introduction of new abbreviations. Abbreviations

must be significantly shorter than their words and

understanding of these abbreviations in a document

is a difficult task for computer systems [6, 1].

Thus, the abbreviation problem has been shown

to affect knowledge-base systems. A method to

associate an abbreviation to its corresponding

expansion is firstly needed as less well-known sense

of abbreviation is not always defined in document.

Consequently, an abbreviation database is needed to

be built and updated with their sense periodically.

This paper is organized as follow. Section 2

presents related work of identifying abbreviation

and section 3 also describes the methods and system

detail design explanation. Section 4 explains the

applying algorithm: Three Letter Acronym (TLA)

and Acronym Finding Program (AFP). Finally

section 5 concludes system implementation result.

2. RELATED WORK

 Taghva and Gilbreth presented a solution for

identifying abbreviation based on hand-built regular

expression. Their paper introduced an automatic

method for finding acronyms and definition in free

text. They used method that based on an exact

pattern matching algorithm applied to text

surrounding the possible acronym. Their algorithm

use dynamic programming to find potential

alignments between short and long form, and used

the results of this to compute feature vector for

correctly identified definitions [2].

Yeates examine acronyms in technical text. The

author used a technique for extracting acronym is

given with an analysis of the results. The author's

technique was found to have a low number of false

negative and high numbers of false positive. The

author implemented the technique was called the

Three Letter Acronym (TLA) [3].

Dana Dannells applied a rule-based method to

solve the acronym recognition task and compares

and evaluates the results of different machine

learning algorithms on the same task. The author's

method proposed was based on the approach that

acronym definition pairs follow a set of patterns and

other regularities that can be usefully applied for the

acronym identification task. The rule-based

algorithms utilizes predefined strong constraints to

find and extract acronym-definition pairs with

different patterns, it has the advantage of

recognizing acronyms and definitions which are not

indicated by parentheses [5].

Schwartz and Hearst presented the problem of

identifying abbreviation’s definitions can be solved

with a much simpler algorithm than that proposed

by other research efforts. They introduced a new

algorithm for extracting abbreviation and their

definitions from biomedical text [4].

3. THEORICAL BACKGROUND

First of all, Figure 1 illustrates the architecture of

the proposed system introduce the whole processing

of this system. Firstly, each user has a chance to

enter a text string .After entering the text string; the

tokenizer tokenized the input string into word by

word. Abbreviation recognizer determines the letter

within the parentheses whether it is a candidate

abbreviation or not. Candidate acronyms were

determined by matching the initial letter of each

word in the context of a potential acronym against

the appropriate letter. All non-alphabetic characters

were converted to space and any multiple spaces

replaced with a single space. Then the LCS

algorithm identifies a common subsequence of the

letters of abbreviation and a probable definition by

using match pattern and extraction of abbreviation

pattern from database. AFP provides the array

creation and pattern matching is completed by TLA

method. Finally, this system chooses the best

definition of abbreviation for user.

Figure 1. System Architecture

Figure 2. Overview of System Flow

Accept

text

string

Tokenized

on each

word

Database

Recognize

abbreviation

based on

parenthesis

Execute LCS

algorithm (match,

extraction abbreviation

pattern)

Start

Input text string

Word by word

parsing

Abbreviation

recognizer

Parser

Match

Candidate Abbreviation

Leader and type array

Possible definitions

Best definitions

Extract

Output

Abbreviation

End

Knowledge

base

 The detailed flow of the system is shown in

figure[2]. In longest Common Subsequence (LCS)

algorithm component, two implemented task such

as match and extract are responsible for matching

on four patterns. In order to apply the proposed

algorithm, users need two characters arrays. One is

a leader array which contains the letters of

abbreviation. The proposed system is developed by

using these two arrays. The system stores the

abbreviation and its corresponding definition in the

Abbreviation Dictionary in order to meet the user's

desire.

There are several types of abbreviation methods

to identify abbreviation in the input string in order

to understand the string. There are two methods and

pattern based rule to extract abbreviations from the

input string and define their definition.

3.1. Identifying Abbreviation and Definition

 Candidate

In this system, the process of extracting

abbreviations and their definitions from input text

string consists of three main tasks. They are

scanning, extraction and identifying. In scanning,

the input is scanned for occurrences of possible

abbreviation. In extraction, the pair candidate

(definition, abbreviation) are extracted from the

text. In identifying, the correct definition is

identified from the candidates in the sentence that

surrounds the abbreviation.

 Abbreviation candidates are deter-mined by

adjacency to parentheses. The two cases are:

definition (abbreviation) and abbreviation (de-

finition) [5]. In this system, definition

(abbreviation) type is used to support the candidate

determination.

3.2. Finding Abbreviation-Definitions

 Candidate

 The abbreviation can be defined within text in

many possible ways. The definition of the

abbreviation may be before the left parenthesis or

after the left parenthesis. The definition candidate

must appear in the same sentence as the

abbreviation. The size of the text window is a

function of a length of the abbreviation and

maximally allowed distance between a definition

and its abbreviation. The maximum length of a

definition D of an abbreviation A is calculated as in

Equation 1.

 max |D|=min {|A |+ 5, |A| * 2} (1)

For short abbreviations (from two to four

characters), the length of a definition in word should

not be greater than twice the abbreviation length.

For long abbreviation (five or more characters), the

definition should not be longer than the abbreviation

length plus 5.

 The maximum length means the longest distance

of a definition form an abbreviation. If a definition

is in the left context, the distance is the number of

word from the abbreviation to the first word of the

definition [5, 7].

3.3. Abbreviation Patterns and Definition

 Patterns

 Abbreviation recognizer first decides the

prototype of abbreviation and then recognizes and

stores it into a character array. Moreover,

abbreviation patterns are generated for a candidate

abbreviation.

 An abbreviation patterns is a string of ‘c’ and ‘n’

character. An alphabetic character is replaced with

a ‘c’ and a sequence of numeric characters is

replaced with an ‘n’ regardless of its length [1, 7].

Some of candidate abbreviations and their pattern

are shown in table 1. The string consists of non-

alphabetic, numeric and special characters such as -,

/ are not considered in abbreviation patterns.

 Each character (w, s) is used to denote the

normal word and stopword in which the parsed

words are included [1, 5, 7]. Some of definition and

definition patterns are shown in table 2.

Table 1. Abbreviation Patterns

Abbreviations Patterns

ICS ccc

2GB ncc

U5M cnc

MP4 ccn

UCSM cccc

Table 2. Definition patterns

Definitions Patterns

Introduction to

Computer System

wsww

Business to

Business

wsw

Artificial

Intelligence

ww

Operating System ww

Natural Language

Processing

www

4. IMPLEMENTATION OF THE

SYSTEM

 In this section, the implementation of Longest

Common Subsequence (LCS) algorithm and the

workflow of its components named Three Letter

Acronym (TLA) extractor and Acronym Finding

Program (AFP) is also demonstrated in simple.

4.1. Three Letter Acronym (TLA)

Extractor

 Candidate acronyms and their definitions were

selected from a stream of words by using analyzer.

All non-alphabetic characters were converted to

space and any multiple spaces replaced with a

single space. Candidate acronyms were determined

by matching the initial letter of each word in the

context of a potential acronym against the

appropriate letter by using heuristic checker. In

smoother component, each candidate is examined to

define the method of abbreviation using LCS. In

this system, it can be defined to determine what

attribute and what combinations of attributes were

important ones for making the decision by using

TLA method [3].

Figure 3. The Acronym Extractor TLA

4.2. Acronym Finder

 Acronym Finder fined the acronym. Acronym

Finding Program (AFP) which is designed

specifically for finding acronyms and improving

post-processing of text captured using Optical

Character Recognition (OCR). Acronym candidate

is typically defined upper-case words from three to

ten characters in this system.
 Acronym candidates are tested against a list of

"reject words" that commonly appeared in upper-

case, such as TABLE, FIGURE, and roman

numerals. If each candidate passed this test, AFP

constructed text window surrounding the acronym

which was search for its definitions.

 In both cases the numbers of words in the

window are twice the number of characters in the

acronym candidate. After dividing the sub window

they were parsed and generated two symbolic arrays

for the window. The leader array consisted of the

first letter of each candidate word, and the type

array consisted of the type of each word in the sub

window. And the array of initial letters of these

words was matched against the acronym itself using

LCS [3].

 In AFP, the first letter of each word is only

considered for finding acronym. In TLA, each letter

of word is considered for converting non-alphabetic

character to space.

4.3. Longest-Common-Subsequence (LCS)

 Algorithm

 Longest-Common Subsequence (LCS), a string

matching algorithm, is the most useful algorithm to

find abbreviations and acronyms. String matching

algorithm (LCS) presented an algorithm that

generated a set of paths through the window of the

text adjacent to an abbreviation (string from the

leftmost character) and scored these paths to find the

most likely definition. The algorithm identifies a

common subsequence of the letters of abbreviation

and the leader array to find a probable definition. A

subsequence of a given sequence is just the given

sequence with some elements removed. The longest

common subsequence LCS of any two strings X and

Y is a common subsequence with the maximum

length among all common subsequences [2].

 Suppose that the system has achieved a sentence

"A primary program, which include nature of a

National Waste Terminal (NWT) program". The

pre-window of the NWT is "nature of a National

Waste Terminal ", which is generated by TLA and

maximum length of definition and abbreviation.

Then, the leader array [n o a N W T] and the

relative type array [w s s w w w] are generated by a

method called AFP. Consequently, the built-LCS-

matrix is created over leader array and abbreviation

in the sentence as in Figure 3.

 j 0 1 2 3 4 5 6

 i yj o a

0 0 0 0 0 0

Figure 4. The c and b matrices computed by built

 and parse LCS-matrix on X=NWT and

 Y= noaNWT.

0 xi

 1 N

2 W

 3 T

1 1 1 0

 0

 0

1 1 2

 2

1 1

1 1 1 1

W

 0

1

N T

1 1

2

3

n

Lexical

Analyzer
Heuristic

Checker

Smoother

Raw

Text
Candidate Acronym Acronym

Acronym

 The algorithm calculates that when either X or Y

are empty sequences, then the LCS is an empty

string and c [i,j]=0. The matrix c shows the length

of an LCS for string X and Y and store this value in

c [m,n]. In the matrix c, ' m' represents the number

of abbreviation and ' n ' also represents the number

of the leader array.

A “ ” entry in b[i,j] assert that X [i]= Y [j],

and c[i-1, j-1] +1 is the selected according to

equation 1. A“ ” or “ ” in b[i, j] assert that X

[i]  Y[j] and c[i-1, j] or c[i,j-1] is also selected

according to the equation 1,respectively.

 In figure 3, if x[i]=y[j] then “ ”, else “ ” or

“ “.Then parse LCS matrix generate two vectors.

 Two alternative vectors [100023] and [000123]

are built by parse-LCS-matrix. These two vectors are

derived from the resulting Parse-LCS-matrix: (1,1)

(2,5) (3,6) and (1,4) (2,5) (3,6).

 The best result defining abbreviation is chosen by

comparing the vector over four elements as shown in

Table.3. The following four elements for each vector

are shown as follow:

 misses: The number of zeros entries in the

vector; disregarding leading zero, and those zero

entries corresponding to word type of 's '.

 stopcount: The number of stopword that will be

used in the abbreviation definition if the vector is

selected.

 distance: The index of the last non-zero entry.

This value measure the proximately of the definition

to the actual definition.

 size: The number of entries in the vector after

removing leading and trailing zeros. The value

represents the length of the definition in words.

 Thus, the possibility of abbreviation is achieved

by vector 2 because of the greater value of miss in

vector 1[2].

Table 3. Comparison of the resulting vectors

 Vector 1 Vector 2

Misses 1 0

Stopcount 0 0

Distance 0 0

Size 5 3

 As a result, the abbreviation NWT is recognized

as a pair of abbreviation description with "National

Waste Terminal".

5. CONCLUSION

Natural Language Processing is a broad

application area in Artificial Intelligence. In this

paper, the algorithm for extracting abbreviations

and their definitions from input text is expressed.

Moreover, pattern-matching rules are developed to

map abbreviation to its full form and implement the

rule into a software program. The rule is generated

from pattern-based rules and Longest Common

Subsequence (LCS). This paper shows that the

developed system effective for pairing abbreviations

with full forms when the abbreviations are defined

in the text for building dictionary. Non-

alphanumeric characters such as hyphen, slash, and

ampersand are not considered in abbreviation

patterns of this system.

REFERENCES

[1] D.Dannells“Automatic Acronym Recognition”

Computational Linguistics, Department of

Linguistics and Department of Swedish Language

Goteborg University Getborg, Sweden.

[2] k. Taghva, and J. Gilbreth, "Recognizing

Acronyms and their definition",pp.1-6 International

Document Analysis and Recognition Springer-

Verlag 1999 Information Science Research Institute,

University of Nevada, Las Vegas, Received October

1, 1997 / Revised September 8, 1998.

[3] MS. L. Hongfang, Alan R. Aronson , Carol

Friedman “A Study of Abbreviations in MEDLINE

Abstracts”, pp.1-3, Graduate School and University

Center of CUNY National Library of Medicine

Computer Science Department, Queens College of

CUNY Department of Medical Informatics,

Columbia University.

[4] N.L. Aye, “Pattern Based Extraction of

Abbreviations and Their Definitions”, May 2004,

UCSY.

[5] S. Schwartz, and M. A. Hearst, "A simple

algorithm for identifying abbreviation definitions in

biomedical text", Proceedings of the Pacific

Symposium on Biocomputing 2003.

[6] S. Yeates, "Automaic Extraction of acronym

from text", in Proceedings of the Third NewZeland

Computer Science Research Students Conference.

Hamilton, New Zeland, April 1999, University of

Waikato.

[7] X Wang, “Report for Abbreviation

Recognition-on Project”, January 26, 2005.

