

The System of XML Extraction from Relational Databases

Based on Document Object Model

Thidar Win, Khin Than Kyi

Computer University (Kalay)

thidarwin1999@gmail.com, khinthankyi@gmail.com

Abstract

eXtensible Markup Language (XML) is a self-

describing meta-language and fast emerging a

standard for Web data exchange among various

applications. XML is also a new technology that

attracts a great deal of interest and dominates some

areas of information system development. Relational

database is a mature technology that dominates the

implementation of database system. This paper

implements the irregular varies structures to regular

structures and can be extracted XML document by

using the table-based mapping into relational

databases. It proposes the system that extracts the

XML document from the data stored in the database.

It provides a generalised mapping between

relational databases and XML document that is

based on Document Access Definition (DAD) and

the tree structure of the Document Object Model

(DOM). In this paper, the system is proposed for

storing nodes of input XML document as a

relational tuple by node numbering scheme. It

reduces the redundant components of XML

document, collects and stores the elements and

contents according to their same paths.

Keywords: XML, DAD, DOM Parser, XPath,

Relational Databases.

1. Introduction

In recent years, the Web has been growing

incredibly and has become main information

interchange among various organizations. So also,

XML is emerging as a standard for representing and

exchanging structured and semi-structured data

among applications over the Web. XML documents

refer to the Internet resources, and XML database

system should include the Internet resource

management. XML is a new technology that attracts

a great deal of interest to manage XML data as a

database.

There have been many XML storage solutions

based on the conventional database such as

Relational Database Management System and Object

Database Management System. Relational database

is a mature technology that dominates the

implementation of database system.

This paper describes the generalized mapping

between relational databases and XML document

based on the tree structure of the Document Object

Model (DOM) and Document Access Definition

(DAD). It provides a methodology for translating the

conceptual schema of relational database into XML

schema through DOM and DAD. It also describes

RTX (Relational Translation to XML) which

automates the major functions involved in the

solution which achieves a mapping from relational

database to XML format.

2. Background

In this subsection, we describe some database

for storing structured documents. There have been

several proposals on approaches to XML databases.

Lore is an object-based storage in which all elements

are stored as objects and linked by the use of labels

[6]. However, most work has focused on storing

XML in relational DBMS or indexes [4].The former

approach has been the most popular due to the

success and maturity of the relational DBMS. The

latter approach is based on storing the XML

document as building separate indexes on top [1].

Unlike the approach, these strategies do not use

native layout of XML data and are limited to the

generic optimization strategies built into relational

databases. Some XML storage models have been

proposed in recent years. The native storage of XML

data has been addressed that XML documents are

stored by splitting the XML tree into a tree of pages

[7]. Each page corresponds to a disk block. In this

manner, they reduce the number of blocks read to

traverse the tree.

3. Document Access Definition (DAD)

A mapping file called the Document Access

Definition (DAD) is used to map from relational

data to XML document. DAD tools help to enable

database and table columns for XML [3].

mailto:thidarwin1999@gmail.com,%20khinthankyi@gmail.com

 DAD file: It specifies to store data by using the

XML column method, or defining XML collection

for composition or decomposition.

Location paths: A location path specifies the

location of an element or attribute within an XML

document. The XML Extender uses the location path

to navigate the structure of the XML document and

locate elements and attributes.

For example, a location path of /BookCatalog

/Book/Title points to the element as shown in the

following example:

<BookCatalog>

 <Book>

 <Title>.

3.1 Mapping Relational Databases to XML

Document

An XML document is only a database that is

indexing and storing in the structured relational

databases. There are two types of mappings as

follow [5].

1. Object-Relational Mapping

2. Table-Based Mapping

3.1.1 Object-Relational Mapping

The object-relational mapping is used by all

XML-enabled relational databases. It models the

data in the XML document as a tree of objects that

are specific to the data in the document. In this

model, element types with attributes, element

content, or mixed content (complex element types)

are generally modeled as classes. The model is then

mapped to relational databases using traditional

object-relational mapping techniques. The DOM

models are the documents itself and are the same for

all XML documents, while the model describe above

models the data in the document and is different for

each set of XML documents that conforms to a given

XML schema.

3.1.2 Table-Based Mapping

The table-based mapping is used by many of the

middleware products that transfer data between

XML document and relational database. It models

XML documents as a single table or set of tables.

The structure of the XML document must be as

follows, where the <database> element and

additional <table> elements do not exist in the

single-table case.

<database>

 <table>

<row>

<column1>...</column1>

<column2>...</column2>

</row>

 </table>

 <table>...

 </table>

</database>

Figure 1. Table-Based Mapping of XML

It may be possible to specify whether column

data is stored as child elements or attributes, as well

as what names to use for each element or attribute.

In addition, products that use table-based mapping

often optionally include table and column meta-data

at the start of the document or attributes of each

table and column element. The term "table" is

usually interpreted loosely. When transferring data

from the database to XML, a "table" can be any

result set or a "table" can be a table or an updateable

view. The table-based mapping is useful for

serializing relational data.

3.2 DOM Parser

A parser is an application that reads XML

document and determines if it meets the XML

syntax requirements to be well-formed.

DOM is both the programming interface

hierarchy and method for locating and exposing data

for manipulation and represents the tree view of the

XML document. DOM is the only available method

of XML data representation from the relational

databases [2].

Figure 2. DOM Parser

4. Proposed System Design

In relational databases, data-set about XML

document converted and stored in relational

databases.

This system deals with DAD approach by which

all multiple XML documents are collectively

grouped according to their paths, and stored together

in the repository. This system stores XML contents

in user-defined types and map contents.

All root-to-leaf paths of XML document, where

leaf is either attribute or element, are assigned a

unique ID (i.e., path ID) and stored in the path table.

Each node (i.e., text string, attribute value, and

element) of the XML document is captured in the

appropriate table separately.

As the result, the system is implemented as two

outputs. First output is presented XML document by

extracting from relational databases and the second

can be viewed as the tree structure.

Figure 3. Proposed System Design

5. System Implementation

 This system has been implemented two functions:

Storing XML document to relational databases and

Extraction XML document from the relational

databases.

5.1 Storing XML Document to Relational

 Databases

The first function is the specification of different

tables for relational database in order to store

various structures into a system. The numbering

scheme determines the ancestor-descendant

relationship between elements in the hierarchy of

XML data.

The following Figure is the sample XML

document to store in the relational databases.

Figure 4. Sample XML Document

XML document can be mapped into the

following tables:

 NODE Table

 PATH Table

 VALUE Table

The NODE table stores elements and attributes

of XML document. The actual values of elements

and attributes are stored in the corresponding

VALUE type table.

The data in the tables are inserted in a <column>

tag for each column according to elements between

tags (“<” and “>”) of XML document.

It is defined four attributes: name, type, path and

value.

 Name: it specifies the name of the column that is

created in the inside table.

 Type: it indicates the SQL data type in the table

for each indexed element or attribute.

 Path: it specifies the location path in the XML

document for each element or attribute to be

indexed.

5.1.1 The Schema of Tables

In order to store XML document in relational

database tables are constructed by using table-based

mapping. These tables are classified into path table,

all nodes table, same node groups table, node

repository and value repository.

(1) Path Table

In this table, it maintains path expressions. The

leaf nodes of the index tree contain references

pointing to the associated node groups.

The hierarchical relationship between nodes is

expressed by operators "/". It is the XPath to specify

the content of Path Expression and Path Identifier.

Eg: /BookCatalog/Book

Table 1.XPath Expression and Path identifier

XPath is a mechanism to locate a particular node

or portion inside the XML document’s tree

structure. It is like a “file path” used in computer’s

file system to locate files.

Path Expression Path ID NodeID

/BookCatalog 101 1

/BookCatalog/Book 102 1.1, 1.2

/BookCatalog/Book/@id 103 1.1.1, 1.2.1

/BookCatalog/Book/Title 104 1.1.2, 1.2.2

/BookCatalog/Book/Auth

or

105 1.1.3, 1.2.3

/BookCatalog/Book/Price 106 1.1.4, 1.2.4

<xml version="1.0"?>
<BookCatalog>

 <Book>

<Bookid="1001">

 <Title>Java</Title>

 <Authors>Peter</Authors>

 <Price>$5</Price>

 </Book>

 <Bookid="1002">

 <Title>HTML</Title>

 <Authors>Jone</Authors>

 <Price>$7</Price>

 </Book>

</BookCatalog>

Table 2. All Nodes in Storage System

Table 2 shows all nodes in the storage system.

 (2) Same Node Groups

Node groups, a set of node-references are

grouped together taken from the same paths belong

to the document.

Table 3. Same Node Groups Table

(3)Node repository

Node repository maintains root node and all the

internal nodes with the relationship of parent node

and child node.

Table 4. Node Repository

(4) Value repository

Value repository contains the external node

values.

Table 5. Value Repository

5.2 Extracting XML from the Database

The second function is that extraction process

could be taken to achieve the input/update process. It

describes a simple relational schema for a document.

The extraction of data from database relies on a

mapping between the stored tables of parent-child

relationship and the respective portions of the

database schema.

The following Figure 5 is tree representation

taken from Figure 4 of sample XML document.

Each node in the schema tree is assigned a unique

identifier.

Node

ID

Parent

Node ID

Node type NodeName Value

1 0 Element BookCatalog

1.1 1 Element Book

1.1.1 1.1 Attribute @id 1001

1.1.2 1.1 Element Title Java

1.1.3 1.1 Element Author Peter

1.1.4 1.1 Element Price $5

1.2 1 Element Book

1.2.1 1.2 Attribute @id 1002

1.2.2 1.2 Element Title HTML

1.2.3 1.2 Element Author Jone

1.2.4 1.2 Element Price $7

Path ID Node ID Parent ID Same Node Groups

101 1 0 BookCatalog

102 1.1 1 Book

102 1.2 1 Book

103 1.1.1 1.1 @id

103 1.2.1 1.1 @id

104 1.1.2 1.1 Title

104 1.2.2 1.2 Title

105 1.1.3 1.1 Author

105 1.2.3 1.2 Author

106 1.1.4 1.1 Price

106 1.2.4 1.2 Price

Path

ID

Node

ID

Parent

Node ID

NodeName Node Child ID

101 1 0 BookCatalog 1.1,1.2

102 1.1 1 Book 1.1.1,1.1.2,1.1.3,1.1.4

103 1.1.1 1.1 @id

104 1.1.2 1.1 Title

105 1.1.3 1.1 Author

106 1.1.4 1.1 Price

102 1.2 1 Book 1.2.1,1.2.2,1.2.3,1.2.4

103 1.2.1 1.2 @id

104 1.2.2 1.2 Title

105 1.2.3 1.2 Author

106

1.2.4 1.2 Price

Path ID Parent ID Node Value

103 1.1.1 1001

103 1.2.1 1002

104 1.1.2 Java

104 1.2.2 HTML

105 1.1.3 Peter

105 1.2.3 Jone

106 1.1.4 $5

106 1.2.4 $7

Figure 5. Tree-like for XML Document

5.2.1 Output Generation as a Tree

The user would indicate which data is to be

extracted from the desirable portions of the database.

The output XML document, extracting from

relational databases, can be transferred into tree

structure by using DOM. It provides the parent-child

relationship of a pair of nodes.

Figure 6. Schema Tree Based on DOM

6. Conclusion

XML is semi-structured data (irregular

structure). The Web page using XML has large

irregular data-set and it is difficult to transport on

Web. In this paper, the system is introduced by

mapping between XML and relational data models.

It can be presented a generalized means of

extracting XML data from relational database

storing of XML data. The main features of this

extraction mechanism are the production of the

XML formatted based on the database structure and

specified in a schema, expressed in an XML schema

language. It implements the data characteristics and

data usage models, to intend the impact storage

result by the use of table-based mapping method

which contains multiple tables. The storage result is

implemented by the number of tables. The

fundamental point of the system is to make the

reader understand the fact that XML data can be

always stored to relational database, and relational

data can be always published as XML documents.

Finally, this system is generated to the tree structure

of XML by using DOM. XML indexing and storage

system from relational database is implemented with

DAD, DOM parser, Xpath and other useful

methods.

7. References

[1] A.V.D Lee, W.C.Lee, and P.L.P.State,

"Supporting XML Security Models using

Relational Databases: “.

[2] A.Salminen Dept. of Computer Science and

Information Systems, "Requirements for XML

Document Database Systems:", Department of

Computer Science University of Waterloo

Waterloo, ON, Canada .

[3] B.Lewis lewisba@cs.latrobe.edu.au,

”Generalised XML extraction from relational

databases based on ad-hoc XML schema”.

[4] E.P.Lim, W.K.Ng, "ENAXS: Efficient Native

XML Storage System", NTU Nanyang Avenue,

N4-B3C-13, Singapore.

[5] Igor, Stratis D, "Storing and Querying Ordered

XML Using a Relational Database System".

[6] W.S.Han , K.H.Lee and B.S. Lee, "An XML

Storage System for Object-Oriented/ Object-

Relational DBMSs".

 [7] M.Nicola, Kane.et.al, "Native XML Support in

DB2 Universal Database ", Bert van der Linden

IBM Silicon Valley Lab.

mailto:lewisba@cs.latrobe.edu.au

