
Creation of Query View Using Materialized View

Khin Mar Wai

Computer University (Monywa) Myanmar

pollya.nar09@gmail.com

Abstract

A data warehouse is a redundant collection of

data replicated from several possibly distributed

and loosely coupled source databases organized to

answer On-Line Analytical Processing (OLAP)

queries. OLAP queries are typically aggregate

queries over very large fact tables of Data

Warehouse. This paper can create tables by

organizing data that are mostly used by users and.

can also show time comparison between the time

taken to retrieve data from the original database

and the time taken to retrieve data from the

materialized views. To get fast answers, creating

materialized views on that data warehouse is the

best. A materialized view is the precalculated

(materialized) result of a query. Materialized Views

are used when immediate response is needed.

1. Introduction

This paper implemented materialized view

creation, i.e. a table will be created to store the

tuples resulting from the view definition and while

executing the queries on the view, the tuples will be

taken from the table instead of generating those on

the fly as in case of normal views. This thesis had

also added the materialized view maintenance

functionality, wherein, as and when updates are

made to the base tables, the materialized view will

also be updated.

The advantage of using materialized views is

that for the retrieval type of queries which may have

to be performed quite frequently, the base table need

not be queried each time. Instead, a simple query on

the view would retrieve all the required data include

the aggregate functions like max, min, avg, sum etc.

In case of the standard views, which are currently

available in PostGres, whenever data is retrieved

from the view, the query is actually fired on the base

table on which the view is created. Hence, this is a

costly operation. This can be avoided using

materialized views which are extremely beneficial

for aggregate type of queries.

 Data warehousing and On-line Analytical

Processing (OLAP) are essential elements of

decision support, which has increasingly become a

focus of the database industry. Many commercial

products and services are now available, and all of

the principal database management system vendors

now have offerings in these areas. Decision support

places some rather different requirements on

database technology compared to traditional on-line

transaction processing applications. This paper

provides an overview of data warehousing and

OLAP technologies, with an emphasis on their new

requirements. This thesis describes back end tools

for extracting, cleaning and loading data into a data

warehouse, multidimensional data models typical of

OLAP, front end lient tools for querying and data

analysis, server extensions for efficient query

processing and tools for metadata management and

for managing the warehouse. This system provides

mechanisms of implementing materialized views to

retrieve and get fast answer for a given query. The

most common situations where you would find

materialized views useful are in data warehousing

applications and distributed systems. In warehousing

applications, large amounts of data are processed

and similar queries are frequently repeated. If these

queries are pre-computed and the results stored in

the data warehouse as a materialized view, using

materialized views significantly improves

performance by providing fast lookups into the set of

results.

2. Related Word

According to W.H.Inmon, a leading architect in

the construction of data warehouse systems, a data

warehouse is a subject-oriented, integrated, time-

variant and non-volatile collection of data in support

of management’s decision making process.

G.Limaye presents that an enterprise data

warehouse contains historical detailed data about the

organization. Typically, data flows from one or more

online transaction processing (OLTP) databases into

the data warehouse on a monthly, weekly, or daily

basis. The data is usually processed in a staging file

before being added to the data warehouse. Data

warehouses typically range in size from tens of

gigabytes to a few terabytes, usually with the vast

majority of the data stored in a few very large fact

tables.

S.Chaundhuri and U.Dayal discussed the

techniques employed in data warehouses to improve

performance is the creation of summaries, or

aggregates. They are a special kind of aggregate

view which improves query execution times by

precalculating expensive joins and aggregation

operations prior to execution, and storing the results

in a table in the database. For example, a table may

be created which would contain the sum of sales by

region and by product.

3. Theory Background

Data warehouses have been defined in many

ways, making it difficult to formulae a rigorous

definition. Loosely speaking, a data warehouse refers

to a database that is maintained separately from an

organization’s of a variety of application systems.

Data warehouse is a relational database that is

designed for and analysis rather that for transaction

processing. They support information processing by

providing a solid platform of consolidated historical

data for analysis.

 A data warehouse can be view as an

information system with the following attribute:

1. It is a database design for analytical tasks using

data multiple applications.

2. It supports a relatively number of users with

relatively long interactions.

3. Its usage is read intensive.

4. Its content is periodically updated.

5. It contains current and historical data to provide

an analytical perspective of information.

6. It contains large few tables.

7. Each query frequently results in a large set and

involves frequent full scan and multiple joins.

 A data warehouse system comprises the

data warehouse and all components used for

building and accessing the data warehouse. Data

warehouse is a repository of an organization’s

electronically stored data. This definition of the data

warehouse focuses on data storage. However, the

means to retrieve and analyze data, to extract,

transform and local data, and to manage the data

dictionary are also considered essential components

of a data warehousing system.

 Data warehouse systems serve users or

knowledge workers in the role of data analysis and

decision making. Such systems can organize and

present data in various formats in order to

accommodate the diverse need of the different users.

These systems are known as On-Line Analytical

Processing (OLAP) systems. Data warehouses are

optimized for speed of data retrieval. Frequently data

in data warehouses are demoralized via a

dimensional-based model. Also, to speed data

retrieval, data warehouse data are often stored

multiple times – in their most granular form and in

summarized forms called aggregates. Data

warehouse data are gathered from the operational

systems and held in the data warehouse even after

the data has been purged from the operational

systems.

 ROLAP and MOLAP are simply terms that

refer to common methods for storing data used by

OLAP systems. In either case, the user interface is

still an OLAP interface. The only difference is the

database technology used to store their data in a

series of tables and columns. Multidimensional

database store their data in large multidimensional

arrays. The most common data structure for ROLAP

data is the star schema or some variant, like the

snowflake schema. ROLAP in which relational

database system tuned for star schemas, using

special index structure such as Bitmap indexes and

Materialized views. Bitmap indexes represent for

each key of a dimension table telling which tuples of

the fact table have that value. Materialized views

answer to general queries from which more specific

queries can be answered with less work than if we

had to work from the raw data.

ROLAP tools are the traditional SQL-oriented

tools that have tight integration to the relational

model. The current generations of ROLAP tools are

powerful and easy to use. The Relational On-Line

Analytical Processing (ROLAP) is emerging as the

dominant approach in data warehouse with decision

support applications. In order to enhance query

performance, the ROLAP approach relies on

selecting and materialized in summary tables subsets

of aggregate views which are then engaged in

speeding up OLAP queries.

4. Creation of Materialized View

In a database management system following the

relational model, a view is a virtual table

representing the result of a database query.

Whenever an ordinary view's table is queried or

updated, the DBMS converts these into queries or

updates against the underlying base tables. A

materialized view takes a different approach in

which the query result is cached as a concrete table

that may be updated from the original base tables

from time to time. This enables much more efficient

access, at the cost of some data being potentially out-

file://wiki/Database_management_system
file://wiki/Relational_model
file://wiki/View_(database)
file://wiki/Table_(database)
file://wiki/Database
file://wiki/Query
file://wiki/Cache

of-date. It is most useful in data warehousing

scenarios, where frequent queries of the actual base

tables can be extremely expensive.

In addition, because the view is manifested as a

real table, anything that can be done to a real table

can be done to it, most importantly building indexes

on any column, enabling drastic speedups in query

time. In a normal view, it's typically only possible to

exploit indexes on columns that come directly from

(or have a mapping to) indexed columns in the base

tables; often this functionality is not offered at

all[9].A materialized view definition can include any

number of aggregates, as well as any number of

joins. In several ways, a materialized view behaves

like an index:

 The purpose of a materialized view is to

increase request execution performance.

 The existence of a materialized view is

transparent to SQL applications, so a DBA

can create or drop materialized views at any

time without affecting the validity of SQL

applications.

 A materialized view consumes storage

space.

 The contents of the materialized view must

be maintained when the underlying detail

tables are modified.

 Materialized views are schema objects that

can be used to summarize, precompute,

replicate, and distribute data. E.g. to construct a

data warehouse. There are three types of

materialized views:

 1. Read only

 Cannot be updated and complex

materialized views are supported.

 2. Updateable

 Can be updated even when disconnected

from the master site.

 Are refreshed on demand.

 Consumes fewer resources.

 Requires Advanced Replication option to be

installed.

3. Writeable

 Created with the for update clause.

 Changes are lost when view is refreshed.

 A data warehouse uses multiple

materialized views to efficiently process a given set

of queries. These views are accessed by read-only

queries and need to be maintained after updates to

base tables.

 A materialized view provides indirect

access to table data by storing the results of a query

in a separate schema object. Unlike an ordinary

view, this does not take up any storage space or

contain any data. The existence of a materialized

view is transparent to SQL, but when used for query

rewrites will improve the performance of SQL

execution. An updatable materialized view lets

insert, update, and delete. A materialized view can

be defined on a base table, partitioned table or view

and define indexes on a materialized view. A

materialized view can be stored in the same database

as its base table(s) or in a different database.

Materialized views stored in the same database as

their base tables can improve query performance

through query rewrites. Query rewrites are

particularly useful in a data warehouse environment.

4.1. Query Database Process

In this process, actor choose tables and fields

name to view data from database. System shows data

according to choose tables and fields name. System

shows time span with milliseconds. User can view

differences of time span between Query Database

Process and Query View Process by viewing two

forms.

4.2. Materialized View Creation

This is the materialized view process using

Structured Query Language (SQL) statements. In

this form, actor choose fields name from dimension

and fact tables to create view table. And entry view

name. System auto create view table and save data

according to choose fields and tables.

file://wiki/Data_warehousing
file://wiki/Index_(database)

4.3. Query View Process

In this form, system shows data according to

choose view name by using SQL statement. System

shows timespan with milliseconds.

5. System Design

Start

Create/View

/Direct

Choose View Name

Set Filter Settings

Execute Selected View

Select Fact and

Dimension Tables

Set Relations of Fact

and Dimension Tables

Choose Fields for

Materialized Views

Set aggregate function

for selected fields

Creating the

Materialized Views
Getting Result From Materialized Views

WH

DB

View

Create

Enter Query

Executing

Show Result

Direct

Figure1. System Flow Diagram

In this system has three parts, view creation,

extraction of data using view and from base tables.

View creation can be done by administrator. To

create view, firstly select fact and dimension tables

and then set relation of these tables and choose fields

for materialized view. Then set aggregate function

for selected fields and materialized view had been

created. Extraction of data directly from views and

original base tables can be done by any users.

6. Conclusion

This paper can create materialized view tables

according to choose tables and fields name. System

will construct SQL statement automatically to create

view tables and to bind data to view tables. By using

materialized view creation, user can view data from

view tables with less time. So to view fast data, view

materialization is a viable alternative. Precomputing

aggregates on some subsets of dimensions and their

corresponding hierarchies can substantially reduce

the response time of a query. OLAP applications use

precomputation of aggregate data to improve query

response time.

Materialized Views can reduce system cpu/io

resource requirements by pre-calculating and storing

results of intensive queries and allow for the

automatic rewriting of intensive queries can be

refreshed on demand or on a schedule. Materialized

views have been found to be very effective at

speeding up queries, and are increasingly being

supported by commercial databases and data

warehouse systems. However, whereas the amount of

data entering a warehouse and the number of

materialized views are rapidly increasing, the time

window available for maintaining materialized

views is shrinking. These trends necessitate efficient

techniques for the maintenance of materialized

views. In this paper, we show how to find an

efficient plan for the maintenance of a set of

materialized views, by exploiting common sub

expressions between different view maintenance

expressions.

7. References

[1] A.Savagaonkar and S.Kulkami,”Materialized View

Definition and Maintance”, Indian Institute of

Technology, Bombay.

[2] E.K.Sze and T.W.Ling,” Materialized View

Maintenance Using Version Numbers”, School of

Computing, National University of Singapore, Lower Kent

Ridge Road, Singapore 119260.

[3] G.Limaye,”Data Warehousing with Materialized

Views”, Release 8.1.5, A67775-01.

[4] N.Roussopoulos and Y.Kotidis,”An Alternative

Storage Organization for ROLAP Aggregate Views Based

on Cube trees”, Department of Computer Science,

University of Maryland, kotidis@cs.umd.edu,

nick@cs,umd,edu.

[5] S.Agrawal and V.Narasayya,”Automated Selection

of Materialized Views and Indexes for SQL Databases”,

Microsoft Research, sagrawal@microsoft.com,

vivdknar@microsoft.com.

[6] S.Chaundhuri and U.Dayal "An Overview of Data

Warehousing and OLAPTechnology", Microsoft

Research,Redmond,urajitc@gmail.com,dayal@hpl.hp.com

.

[7] A.Berson and S.J.Smith,”Data warehousing, Data

Mining and OLAP, ISBN-0-07-006272-2.

[8] D.M.S.Anahory,”Data Warehousing in the Real

World”, ISBN-0-201-17519-3.

[9] http://en.wikipedia.org/wiki/Materialized View.

[10] http://www.ss64.com/orasyntax/3views,html.

[11] http://youngcow.net/doc/oracle10g/server.102/b14

200/statements 6002.htm.

[12] http;//en.wikipedia.org/wiki/Data_warehouse.

mailto:kotidis@cs.umd.edu
mailto:sagrawal@microsoft.com
mailto:vivdknar@microsoft.com
http://en.wikipedia.org/wiki/Materialized%20View
http://www.ss64.com/orasyntax/3views,html
http://youngcow.net/doc/oracle10g/server.102/b14%20%20200/statements%206002.htm
http://youngcow.net/doc/oracle10g/server.102/b14%20%20200/statements%206002.htm

