
Multiplying Strings of N Matrices using Mobile Agents

Phyo Phyo Ko, Yin Ko Latt

University of Computer Studies, Magway

phyophyoko@gmail.com

Abstract

Mobile agent is one that is not bound to the

system for their execution on a network. Each

mobile agent can travel around the network and

perform the tasks. We propose the use of mobile

agent in parallel computation models such as

pipelined model in matrix multiplication algorithm.

A matrix multiplying is common in many real-world

problems and it is a simple, general purpose way to

improve the performance of many tasks. And it is

also simple parallel structure that can be used to

speed up many problems and can eliminate load

unbalance problems. Mobile agent efficiently

support parallel and distributed computing. The

main aim of this paper is to save time for

multiplying matrices and less cost using mobile

agent. Mobile agent will be applied in multiplying

matrices to save time than other. Agent is worked in

two main parts, Master and Worker agents.

1. Introduction

 Mobile Agent technology is a new networking

technology that deals with both form of logical and

physical mobility [6]. Mobile agents are an effective

choice for many applications for several reasons,

including improvement in latency and bandwidth of

client-server applications and reducing vulnerability

to network disconnection.

 Mobile agents are being used already in a variety

of Internet-based distributed computing

applications: web database, cooperative

environment, and information gathering systems,

electronic commerce systems and so on.

 The use of parallel processing as a means of

providing high performance computational facilities

for large-scale and grand-challenge applications has

been investigated widely [5]. In some application

areas, parallel computer may be easier to program,

give performance unobtainable in any other way,

and might be more cost-effective than serial

alternatives. Serial computer have a number of

conceptual drawbacks in some of the application.

The main reason for creating and using parallel

computer is that parallelism is one of the best ways

to overcome the speed bottleneck of a single

processor.

Mobile agent that makes its much easier to

design, implement, and maintain distributed

systems. It reduces network traffic and provides an

effective means of overcoming network latency.

Using mobile agent by parallel processing gives us

save-time and cost-effective in larger problems.

In this paper mobile agent is developed on aglet

software. This paper describe the development of

parallel application using Java Mobile Agent based

pipelined computing. The mobile agent execution

environment used to realize is based on the Aglet

Technology. Traditionally, software has been written

for serial computation: to be executed by a single

computer having a single Central Processing Unit

(CPU); problems are solved by a series of

instructions, executed one after another by the CPU.

Only one instruction may be executed at any

moment in time. In the simplest, parallel computing

is the simultaneous use of multiple compute

resources to solve a computational problems.

 This paper is organized as follows. In section 2, a

description of related work is given. Section 3

describes the background theories. Section 4

describes the proposed system design. Section 5

describes the experimental result and section 6

describes the conclusion.

2. Related Work

There are a few research projects that are similar

to our mobile agent based pipeline. In [6], the

performance of mobile agent in parallel and

distributed computing in which developed and tested

a prototype system with several applications such as

computing PI value, generating prime number, an

image processing and sorting numbers. H.A. Thant

[5] presents the efficient load balancing method for

cluster based parallel applications using mobile

agents. In the system proposed in [2], a novel mobile

agent based “push” methodology from the

perspective of application. In the method, users

declare their computation-bound jobs as autonomous

agents. Obeloeer et.al [3] presented FLASH

(Flexible Agent System for Heterogeneous Cluster)

system, which use a mobile agent have the

capabilities to travel through a heterogeneous cluster

mailto:phyophyoko@gmail.com

and to fulfill jobs on the visited computation nodes.

Each mobile agent can travel anywhere in the web to

perform its tasks.

3. Background Theory

3.1. Mobile Agents

Mobile agents are processes that dispatched from a

source computer to accomplish a specified task [4].

After its submission, the mobile agent proceeds

autonomously and independently of the sending

client. When the agent reaches a server, it is

delivered to an agent execution environment. Then,

if the agent possesses necessary authentication

credentials, its executable parts are started. To

accomplish its task, the mobile agent can transport

itself to another server, spawn new agents, and

interact with other agents. Upon completion, the

mobile agent delivers the results to the sending

client or to another server.

There are seven good reasons for using mobile

agent. They are [4]:

1. They reduce the network load. Distributed

systems often rely on communication protocols that

involve multiple interactions to accomplish a given

task. This is especially true when security measures

are enabled. The result is a lot of network traffic.

Mobile agents allow you to package a conversation

and dispatch it to a destination host, where the

interactions can take place locally as shown in

Figure 1. Mobile agents are also useful when it

comes to reducing the flow of raw data in the

network. When very large volumes of data are stored

at remote hosts, these data should be processed in

the locality of the data rather than transferred over

the network.

2. They overcome network latency. Mobile

agents offer a solution, because they can be

dispatched from a central controller to act locally

and directly execute the controller's directions.

RPC-Based Approach

Applicatio

n

Host A

Service

Host B

Applicatio

n

Host A

Service

Host B

Mobile Agent-Based
Approach

Figure 1. Mobile Agents and Network Load

Reduction

3 They encapsulate protocols. When data are

exchanged in a distributed system, each host owns

the code that implements the protocols needed to

properly code outgoing data and interpret incoming

data, respectively. Mobile agents, on the other hand,

can move to remote hosts to establish "channels"

based on proprietary protocols.

4. They execute asynchronously and

autonomously. Often, mobile devices must rely on

expensive or fragile network connections. Tasks that

require a continuously open connection between a

mobile device and a fixed network probably will not

be economically or technically feasible. To solve this

problem, tasks can be embedded into mobile agents,

which can then be dispatched into the network.

After being dispatched, the mobile agents become

independent of the creating process and can operate

asynchronously and autonomously as shown in

Figure 2. The mobile device can reconnect at a later

time to collect the agent.

5. They adapt dynamically. Mobile agents

have the ability to sense their execution environment

and react autonomously to changes. Multiple mobile

agents possess the unique ability to distribute

themselves among the hosts in the network so as to

maintain the optimal configuration for solving a

particular problem.

Application Service

Send Agent

Application Service

Disconnect

Application Service
Reconnect

and Return

Figure 2. Mobile Agents and Disconnected

Operation

6. They are naturally heterogeneous. Network

computing is fundamentally heterogeneous, often

from both hardware and a software perspective.

Because mobile agents are generally computer and

transport layer independent and are dependent only

on their execution environment, they provide

optimal conditions for seamless system integration.

7. They are robust and fault-tolerant. The

ability of mobile agents to react dynamically to

unfavorable situations and events makes it easier to

build robust and fault-tolerant distributed systems. If

a host is being shut down, all agents executing on

that machine will be warned and given time to

dispatch and continue their operation on another

host in the network.

3.2 Pipeline Architecture

A key requirement for pipelining is the ability to

send messages between adjacent processes in the

pipeline. This suggests direct communication links

between processors onto which adjacent processes

are mapped. An ideal interconnection structure is a

line or ring structure such as a line of processor

connected to a host system as shown in Figure 3.

The seemingly inflexible line configuration is, in

fact, very convenient for many applications, yet at

very low cost [5].

Output

Figure 3. Basic Architecture of Pipeline

Computing

 Each task on each processor receives input data

from its predecessor, performs its computation, and

sends its output to its successor. The first step reads

external input and the last generates the final output

[7].

4. Proposed System Design

There are two main components in our system.

These components are:

(1) Master and

(2) Worker agent.

They are worked by using dynamic

programming algorithm to minimize the number of

operations. Dynamic programming algorithm work

at master agent.

4.1. Dynamic Programming

In essence, dynamic programming calculates the

solution to all sub-problems. The computation

proceeds from the small subprograms to the larger

sub-problems, storing the answers in a table. The

advantage of the method is in the fact that once a

sub-problem is solved, the answer is stored and

never recalculated.

Consider the evaluation of the product of n

matrices [1]

M = M1 * M2 *……………*Mn,

Where each Mi is a matrix with ri-1 rows and ri

columns. The order in which the matrices are

multiplied together can have a significant effect on

the total number of operations required to evaluate

M.

Trying all possible orderings in which to

evaluate the product of n matrices so as to minimize

the number of operations is an exponential process,

which is impractical when n is large. However,

dynamic programming provides as O(n3) algorithm.

Figure 4 show the dynamic programming algorithm

for computing the minimum cost order of

multiplying a string of n matrices, M = M1 * M2

*……………*Mn, where n is number of matrices,

ri-1 and ri are the dimensions of matrix Mi and m1n is

the required minimum cost for the matrix order.

Figure 4. Dynamic Programming Algorithm for

Minimum Cost Matrix Order

4.2. Matrix Sequence Multiplication

The multiplication of matrix sequence M1 * M2 *

……. * MN can be performed by using the following

algorithm according to the computation architecture.

Figure 5. Master Algorithm for Sequence Matrix

Multiplication

The Master Algorithm for Sequence Matrix

Multiplication can be shown in Figure 5. The

master algorithm, which generate the dimensions,

rows and columns, for all matrices N and find

//generate the random number for dimension of N

matrices

1. for (1=0, i<=N; i++)

 rc[i]=random();

//generate the minimum computing cost matrix

order by using dynamic programming

2. (…(((M1* (((M2* (M3*((M4*M5)*M6)))*

M7)*M8))….*MN-1)*MN)

//create communication objects for first worker

w1

3. create (cli_socket1);

//dispatch the dimension for first two matrices to

worker w1

4. send (d1, d2, NextIPAddr, Dimension);

//receive the final result from last worker wn

5. receive (Result, wN)

Begin

 for i l until n do

 mij 0 ;

 for l 1 until n-1 do

 for i 1 until n-l do

 begin

 j i+l;

 mij MIN(mik+mk+1,j+ri_1*rk*rj);
 i<=k<=j

 end;

 write m1n

end

Host

Com

puter
P

0

P

1

P

2

P

n

-

1

Output

Master
Slaves

matrix order which use the minimum computing

cost on the dimensions of the matrices by using the

dynamic programming. To start the computation the

master create the connection object for the first

worker and send the required data for the

computation to the first worker and have to receive

the final computing result from the last computing

step.

The Worker Algorithm for Sequence Matrix

Multiplication can be defined in Figure 6. This

algorithm intends for each computing worker wi

which corporate in computing the Matrix

Multiplication.

Since the applications considered for this system

are executed in the pipelined form, interconnection

between the computing workers must be configured

to form the pipelined connection. The computing

workers in the pipeline configuration can be both

client and master conditions. In transferring the

computed result from current worker to next

worker, the current worker must be the client form

to dispatch the result to next computing step and the

next worker must be the server form in receiving the

previous result to continue the computing steps.

Figure 6. Worker Algorithm for Sequence

Matrix Multiplication

In this computation, worker for the first

computing step receives the dimensions for the

matrix sequence from Master, generate the two

matrices according to the corresponding dimensions

to compute these two matrices and sends the

computed result including the dimensions to next

worker with the client object to next pipelined step.

The next worker which received the result from

previous worker generate matrix with its

corresponding dimensions and compute with the

previous result matrix and dispatches the result to

next worker with client object for next computing

step. The computing cycle is running repeatedly

until the last computation is finished.

The dataflow and workflow diagram for

sequence matrices multiplication can be depicted in

Figure 7.

 Figure 7. Sequence Matrices Multiplication

5. Experimental Result

In this section, experimental results of our

system are described to evaluate the minimum cost

matrix order by using dynamic programming

algorithm. Multiplying matrices by using dynamic

programming algorithm can less operation and cost.

Assume that, the implication of a p*q matrix by

a q*r matrix, require pqr operations as it does in the

“usual” algorithm, and consider the product.

M = M1 * M2 * M3 * M4

 [10*20] [20*50] [50*1] [1*100]

Where the dimension of each Mi are shown in the

bracket.

M in the order,

M1 * (M2 * (M3 * M4))

Require 125000 operations, while evaluating M in

the order

(M1 *(M2 * M3)) * M4

This order requires only 2200 operations by using

dynamic programming algorithm.

Solution:

M = M1 * M2 * M3 * M4

 [10*20] [20*50] [50*1] [1*100]

 M1 * (M2 * (M3 * M4))

 [50*1] [1*100] = 5000

//create the server object for each worker wi and

listen their server port

1. ServerSocket.open();

//receive the corresponding data for the computing

steps and generate the random number for matrices

and multiply the matrix

2. if (first worker)

 Receive(Dimensions, NextIPAddr);

 Mi[rc[i]][rc[it+1]]=random();

 Mi+1[rc[i+1]][rc[i+2]]=random();

 R1=Mi*Mi+1;

3. else if (not first worker)

 Receive(R1, Dimensions, NextIPAddr);

 Mi=random();

 matrix_multiply(Ri-1, Mi, Ri);

//create the client object to connect next worker

wi+1

4. create (cli_socketi+1);

//send the sub multiplication result to next worker

wi+1

5. send (Ri, wi+1);

 [20*50][50*100] = 100000

 [10*20][20*100] = 20000

Require 125000 operations.

The order by using dynamic programming

algorithm is

 (M1 * (M2 * M3)) * M4

 [20*50][50*1] = 1000

 [10*20] [20*1] = 200

 [10*1] [1*100] = 1000

Require 2200 operations by applying dynamic

programming algorithm.

6. Conclusion

We evaluated and analyzed the usage of mobile

agent in parallel computing models. It has shown

that the better performance obtained as the number

of agents increased. When one’s resource is not

enough for particular problems, mobile agent is one

of the choices for distributed computing. In order to

evaluate the benefit of mobile agents, our future

work will concern a deeper analysis of the mobile

agent based parallel computing by means of many

matrix numbers. The more the matrix number

increase, the better the utilization by using mobile

agent.

REFERENCES

[1] A.V. Aho, J.D. Ullman and J. E. Hopcroft. The

Design and Analysis of Computer Algorithms.

Addison Wesely, 0029.

[2] B. Wims and C. Xu. A novel mobile agent

based “push” methodology from the perspective of

application, in Proceedings of the 24th EUROMCRO

Conference, 1998, pp.1250-1254.

[3] C. Grewe, H. Pals and W. Obeloeer, “Load

Management with Mobile Agent”, in Proceedings of

the 24th EUROMCRO Conference, 1998, pp.1005-

1012.

[4] D.B. Lange and M. Oshima. Programming and

Deploying Java Mobile Agents with Aglets. Addison

Wesely 1998.

[5] H.A. Thant. “Efficient Load Balancing Method

for Cluster Based Parallel Applications Using

Mobile Agents”, in Proceedings of the 3rd

International Conference, 2005, pp.97.

[6] K.M.L. Tun. “Parallel and Distributed

Computing Models for Mobile Agents”, in

Proceedings of the 3rd International Conference,

2005, pp.87-88.

[7] N.N. Oo. “Parallel Computing in Solving

Numerical Problems Using Java Mobile Agent”, in

Proceedings of the 4th International Conference,

2006, pp.519-520.

