A Proposed Test Path Gener

ation Algorithm based on

UML Activity Diagram

Aye AyeKyaw, MyatMyat Min

University of Computer

Sudies, Mandalay

ayeayekyaw2009@gmail.com,myatiimin@gmail.com

Abstract

Software testing is an activity of finding defects
during execution time for a program so that non-
defect software can be got. Software testing plays a
vital role in developing software that is free from bugs
and defects. Manual test is a cost and time consuming
process although it may find many defectsin a software
application. If the testing process could be automated,
the cost of developing software could be reduced
obviously within a minimum amount of time. The most
critical part of the testing process is generation of test
paths. The paper proposes an approach for automatic
Model-Based best test path generation. In this
approach, all possible test paths are directly generated
from XMI (XML Metadata Interchange)filebased on
the activity diagram and a test path from these
generated test paths is optimized. The proposed system
will reduce the processing time, and choose the best
test path without dependence on others.

1. Introduction

Software testing is an essential part of the
software development life cycle (SDLC). Software
testing is an activity that should be done throughbe
whole development process. Software organization:
spend nearly half of the total development time and
cost of the software in testing related activities.
Software testing should be performed efficientlyd an
effectively, within the budgetary and scheduled
limits.Testing can be performed on requirements;

design and implementation phase in the software

development life cycle. The most of disseminating
errors can be eliminated and prevented before é¢o th
next phase if testing is performed in the initiabpe in
SDLC.The efficient and effective approaches are
needed still although there are many existing aatem
test case generation approaches.

The testing process consists of three parts: tes

case generation, test execution, and test evatuatio
Comparing with the other two parts, test case
generation is more challenging and difficult [2].

68

Generating test data from the high level design
notations has several advantages over code-based te
case design.Testing based on design models has the
advantage that the test cases remain valid evem whe
the code changes a little bit [8].

Several heuristic methods are available for
effectivegeneration of test cases. The heuristées e
mainly dividedinto two categories: Black box tegtin
and White box testing.There are classified theirtgst
techniques generally as shown in figure 1.

The rest of the paper is organized as follows:
The next section discussesabout Model based testing
The third section describes analysisof related work
Section 4 shows the proposed model for Model-Based
test path generation. Section 5 presents a cadg &tu
demonstrate the use of our methodology with therog
Screen System and Online Banking System. The
paperconcludes with section 6.

o~

White Box

Black Box

Equivalent Partitioning Basis Path Testing

Boundary Value

Analvsis Loop Testing

Cause-Effect Graphing
Technioues

Control Structure
Testing

Comparison Testing

Fuzz Testing

Model-based testing

Figurel. General Classification of Test Techniques

2. Model-Based Testing derive test cases. The Tabu search technique was
) applied to generate optimal test case.

There ‘are many testing stratggy and among SaurabhSrivastava, Sarvesh Kumar and Ajeet
them, some are ModeI—Based Testmg (MBT) thatKumar Verma proposed a technique for optimal path
depends on extracting test cases from differentetsod sequencing in basis path testing. This approacisés
(requirements models, usage models,__an_d modelﬁ) generate optimal paths using control flow graph
constructed from source code), Spemﬂcaﬂon-basectCFG) and Cyclomatic Complexity for finding the
testing (or black-box testing) that depends ong oo offeasible paths. This paper applied al
requwements models, and Program-based testing (Oéptimization algorithm to prevent from selecting
Wh|te-b9x testing) that uses source code as th(?nfeasible path and also prioritize the feasibléhpa.e.
underlying model [7]. i which path is to be executed first to optimize tiarel

In recent trend, Model-Based Testing becomes %omplexity. With great ease of the ant colony
more popular approach among many researchers,nimization algorithm good results can be got tng
Model-Based Testing (MBT) is a type of testing g5 path testing can be improved, but there me@sa

strategy that depends on extracting test cases ffoRyqare it can be extended such as if repetitiontates
different models (Requirement model, usage mode!l an . \o4es can be controlled which have multiple gath

modgl constructed frF’m source code) [4]. .MBT After execution of this algorithm, it automatically
promises (1)the detection of faults at an earlgestia selects the best path sequence [9].

the development cycleand (2)reduces the maintenanc Model Based Test Case Generation Technique
effort of test scripts as the test cases humancast Using Genetic Algorithms presented by Mary
effort are m|n|m|z_ed. MBT IS seen usually as onem‘p Sumalatha and Raju based on UML activity diagram.
of bla_ck-box testing. MBT is suited perfectly b_emg Finding all paths genetic algorithm operations are
used in system, acceptance, and regression t¢sfing applied to obtain the best test case [11]. In chsdy

MBT h_ave three main key technologies: of their paper, the expected results should be
* Notation used for the model accurately. As the above generated new individaiads

* The test generation Diagram o not part of the generated paths, Path 1 is the riueis
*The tools that generate supporting infrastructiore 5t is selected. By really Path 4 that is coveltesl
the tests [6]. whole of system should be the best path.

In current, Model-Based test case attracts many Shanthi and Mohan Kumar [2] proposed a new
researchers by using some data mining concept ifyoqe| hased approach for automated test cases for
produce an automated optimal test case. ~ UML activity diagrams using genetic algorithm. With

~ Most of research_ers have used the follpwmgthe help of ADT test path are generated, by apglyin
architecture for generating the test paths as shown the GA most prioritized test case are generated. Fo
Figure 2. . . .
9 T — each node, the number of incoming nodes and the
number of outgoing nodes are calculated and then
evaluate fitness values. Next, the initial testadet

* Activity Diagram

. * Genetic Algorithm . i
:Eﬂ‘“gf?“gmﬂ * Taby Search Algorithm selected by randomly. Lastly, the Prioritized feeth is
ta[e- ragram * Ant Colony Optimization
* Use Case Diagram Algorithm generated. The generated test cases apply thehbranc

* Communication Diagram

coverage criteria and the CyclomaticComplexity
Figure2. System Flow of Model Based Test Path coverage.

Generation
4. The Proposed M odel
One or more UML diagrams are used as an

input, construct the dependency table based ore thes In this section, figure 3 illustrates the flow et
diagrams, and then create dependency graph acgordiftutomatic best test path generation by using tteic
to the dependency table. Finally, generate alliptess diagram.

test paths. Some use data mining algorithm to apéim Activity Convert XMT Generae Possible Optimnize the Best
Diagram File Test Paths Test Path
test path [3].

3. Related Works T

Complexity

In [1], Shantghi and Mohan Kumar proposed an
approach for generating test cases for object w@ikn
software that uses Tabu Search technique to design

69

Figure 3. Architecture of the Proposed System

The proposed system uses the activity diagram
as an input for the automated algorithm of genegati
test paths. The Modelio Software has the option of
exporting the UML diagram to XMl file. Figure 4
shows the proposed algorithm for automatic tesh pat
generation.

Input XMl file for Activity Diagram.

Output all possible test paths and the best test path.

begin
k:=0; j:=0; countJoinin:=0
countForkOut:=0;countDecision:=0;
totalDecision:=total decision node of the ADj
TPy++ = source node of InitialEdge.
myNode= target node of InitialEdge.
SearchEdge(myNode, InitialEdge);
OptimalTestPath().

enc

countJoinin := s.getCountNode();
countJoinin++;
s.setCountNode(countJoinin);
if (countJoinin == s.getCountIn())
Add s to TR, ;
endif
else
if(countDecision<=totalDecision*2)
countDecision++;
Add s to TR ;
endif
endif
SearchEdge(tNode)e
endif
endfor
else
Add s t0 TR, ; k++;
countDecision :=0;
Setcountfor Fork node and Join node with O;
endif
end

Figure5. Algorithm of function SearchEdge

Figure4. Algorithm for Automatic Best Test Path
Generation

Figure 5 and Figure 6 describe the functions that
are used from the proposed algorithm. By using this
algorithm, the proposed system generates all plessib
test paths based on the extracted information #Xdh
file according to figure 5. And then, the system
optimizes the best test path among from these
generated test paths by using t@ptimal TestPath
function as shown in figure 6. Finally, the genedat
test paths validate with Cyclomatic Complexity.

SearchEdge(Node s, Edge ee)
begin
nodeType := type of s node;
If (nodeType != FinalNode&&
(k<=totalDecision*2))
For each edge € E /1i=1,2,...,n
sNode := source node of edge e
tNode := target node of edgge e
if (sNode==s)
if (nodeType==Action ||
nodeType==Merge)
Add s to TR ;
else if (nodeType==Fork)
countForkOut : = s.getCountNode();
countForkOut++;

Optimal TestPath()
begin
maxControlNode:= total control node of ;P
maxTotalNode := total node of P
BestPath = T,
for each test path TR TP /i=1,2,...n.
curControlNode := total control node of TP
curTotalNode := total node of TP
if (curControlNode>maxControlNode)

if (curTotalNode>= maxTotalNode)
BestPath := TP,
maxControlNode := curControlNode ;
maxTotalNode := curTotalNode ;
else
BestPath := TP,
maxControlNode := curControlNode ;
endif
endif
if (curControlNode == maxControlNode)
if (curTotalNode>= maxTotalNode)
BestPath := TP,
maxControlNode := curControlNode ;
maxTotalNode := curTotalNode ;
endif
endif
endfor
Display BestPath as the optimal test path;
end

s.setCountNode(countForkOut);
if (countForkOut ==1)
Add s to TR ;
endif
else if (nodeType==Join)

70

Figure 6. Algorithm of function Optimal TestPath

B. Case Study No of Node=3

This section presents the case study of Login
Screen System and Online Banking System. Problen:
statement for Login Screen System: Login screen I*;ufr:\:g;-i%
initially displays a message “Login here using your
Username and Password”. The user enters theusernan
and password and the system checks if the entere -
username and password are valid or not. If they -
arevalid it displays the main page if wrongly eateit
checks the number of times login has been tried. IfFigure9. Extracted the information details of
thenumber of times the login is less than the nurobe ~ Activity Diagram

times feed in the system it displays “Invalid Login Based on these extracted information, all
PleaseTry again” or it displays “Sorry you have nsiple test paths are generated directly from Xil
exceeded the allowed number of login attempts”.Theyy ysing the proposed algorithm. These generatd te
activity diagram for the above problem is as shown paths are shown in Figure 10.

Figure 7 which is created by modelio software.

O Pl: Initial Node -2 Display “Login using

ywour Username and password” -+ Username
atd Password are walid? % Lawmch Main
Page = Actiwity Final MHode

"

Display "Invalid Login
Please try again”

Display "Login using your
Username and password”

PZ: Imnitial MNode —= Display “Login uasirdg
your Usernsme and password® 2 Username
and Password are walid? = HNo. of
Times<=10 —= Display*Borry YTou hawe
excesded the allowed rmwmber of login

attempts" & Actiwity Final Node

[Username an Password are invalid]

[Mo. fo Times=10]

[Username and Password are valid]

[No. of Times ==10]

Launch Main
Page

P3: Initial Mode —= Display “Login using
your Usernsme and password” - Username
ard Password are walid? = Moo of
Times<=10 = Display*SBorry Tou hawe
excesded the alloged mwmber of login
attempt=s" % Display*Tnwalid Login Please
Figure7. Activity Diagram for Login Screen try again® - Display “Login using your
Usernams and password® -3 Usernawe arnd

. . . Paszword are wvalid? -2 Lawmch Main Page —
In figure 8, the nodes and edges information of Aetivity Final Hode

the activity diagram is extracted from converted XM
Pd: Initial Node -2 Display™Login uasirng

file of the activity diagram. hpTRaa i Chii iy Usatiiie
and Password are walid? = HNo. of

Display "Sorry You have exceeded the
allowed number of login attempts"

<wml version="1.0" encoding="UTF-8"?>
; &, ; P
<uml:Model xmiversions"2,1" xmins:xmi="http://schema.omg,org/spec/XMi/2.1" Times<=10 > Display~Sorry Tou hatre
xminsum|="http://www.eclipse.org/umi2/3.0.0/UML" xmiid="_ywWXgIM]EeOHCPIZRGS:DW" excesded the allowed mmber of login
namo-" [SINBEENA"> : . ;
attempt=s" -* Display*Inwvalid Login Please
<packagedElement xmiztype="uml:Activity" xmiid="_wwWXhSMjEeOHcPtZRqSzDw" name="Activity"> try again® = Display “Login usi wour
<node xmitype-="um! Imlmleh”irm‘\z\ " wwWX|IMEeOHcPtZRqSzDw" name="Initial Node" Tzermams and passm:\rd” = Uzername and
outgoing="_vwWXIM|EeOHcPIZRgSzDw" />
i R e o Pas=wmord are wvalidr = Mo, of Times<=10 -3
<nade smiztype="ym|:OpagueAdion” xmiid="_wWXZMECOHCPIZRgS2DW" name="Display ;
"Login using your Username and password"” outgoing="_ywWXIpMiEeOHcPtZRqSz Dw" Display“Sorry You hawe exceeded the
incoming="_vwWXIMiEeOHCPIZRGSDw _vwWXmIMjEeOHCPIZRGSZDw" > allowmed romber of log:i.n att empts LE—-
<body></body> Actiwitw Final MNode
</node> . A
Figure 10. All Possible Test Paths

<edge xmitype="uml:ControlFlow” xmiid="_wwWXIMiEeOHcP1ZRqS:Dw" Rame=-"ControlFlow"
Souree-"_vwWXIMiEsOHcPIZRSzDW" TaKgeT="_vwWX|ZMjEe OHcPtZRgSz0w">

wwiht amitize-uuarenton” smbic” vuHNkRCHC IR SDe ehon'1" And then the best test path is optimized depend
on number of control nodes and number of total sode
of each test path according to the propose algurith
Figure8. Converted XMI file from Activity The best test path is shown in Figure 11.

Dlagram P4: Imitial Node = Display“Login wusing vyour
Usernamse and password” = Username and Password
are walid? -5 MNo. of Times<=10 - Display™Sorry
Each node has node type, identity of node, node | Y have exceeded the allowed mmber of login

. . . . i . attenpts” % Display*Tnwvalid Login Please try
name, identity of incoming edges, and identity of again’ 3 Display “Login using yomur Userrmme and

password” 2 Usern=ame and Password are walid? 3

outgoing edges. Each edge has edge type, iderftity 0 | g " 0f Times<eln > Displag“Serty Tou have

edge, edge name, identity of source node, andiigent excesded the allowed mmber of login actempts” -
Aotivity Final Node

of target node. The number of node and edge, and :

detailed information are shown in Figure 9. Figure1l. TheBest Test Path

71

We can see that the number of predicates arefficient and effective in the software development

three,edges E are 9 and nodes N are 8, then thbewil
asfollows:

V=E-N+2=9-8+2=3 testpaths

because the human effort
errors,and the steps at the evolution of generssd
paths are reduced.

in finding bugs and

Then the upper bound of test paths that ensures thﬁeferences

fullactivity path coverage is 4 test paths whichreve

produced bythe proposed model. Since, 0

Branch coverage<=Cyclomatic complexity<=no. of gath

Therefore, the branch coveragecriteria, and the
Cyclomatic complexity coverage are applied by the
generated test cases. [2]

The proposed approach is also evaluated by the
Activity diagram of Online Banking Systemshown in
the appendix A. When the information is extracted
from XMl file, the total node of the activity diagm is
51 nodes and the total edge is 59 edges. Findlly, a
possible test paths that total test paths are 3Jpshs;
and the best test path are generated.

The proposed system generates all test paths
directly from the input file without redundant test [4]
paths. Compare the system of Suppandeep Sandhu and
Amardeep Singh, their system generate all possiiste
paths via the final state transition table thatated

(3]

from the input file for tax calculator activity djeam [5]
[10]. The proposed system spends less nearly ticeef
in execution time than the system of [10] for tlhens 6]

input activity diagram.

As the proposed approach can generate all
possible test paths and the best test path foonigt
small system but also large complex system, the
proposed approach is efficient and effective foy an [7]
system.However, in concurrent activities, the psmgab
system also eliminates the redundant activitiesnfro
each test path.

6. Conclusion 8]

Quality is the main focus of any software
engineering project.Software testing is an actittst 9]
is performed for evaluating software quality andoal
for improving it.Good software testers cannot avoid
models. MBT has emerged as a useful and efficient
testing method for realizing adequate test coverHdge

A.V.K. Shanthi, G. MohanKumar, “A Novel Approa

for Automated Test Path Generation using TABU
Search Algorithm”, International Journal of Computer
Applications (0975 — 888)Volume 48— No0.13, June
2012.

AV.K. Shanthi, G. MohanKumar, “A Heuristic
Technique for Automated Test Cases Generation from
UML Activity Diagram”, Journal of Computer Science
and Applications. Volume 4, Number 2 (2012), pp- 75
86.

Aye Aye Kyaw; Myat Myat Min. “Model-Based
Automatic Optimal Test Path Generation via Search
Optimization Techniques: A Critical Review”. In
Proceedings of the 12th International Conference on
Computer Applications 2014.

Aye Aye Kyaw and Myat Myat Min, "An Efficient
Approach for Model Based Test Path Generation,"
International Journal of Information and Education
Technology vol. 5, no. 10, pp. 763-767, 2015.

“Certified Tester Foundation Level Syllabus”, |Ba&sed
Version 2011, International Software Testing
Qualifications Board.

Chanda Chouhan Vivek Shrivastava Parminder $h&o
“Test Case Generation based on Activity Diagram for
Mobile Application”, International Journal of Compeut
Applications (0975 - 8887)Volume 57— No.23,
November 2012.

Pakinam N. Boghdady, Nagwa L. Badr, Mohamed
Hashem and Mohamed F.Tolba, “A Proposed Test Case
Generation Technique Based on Activity Diagrams”,
International Journal of Engineering & Technology
IJET-IJENS Vol: 11 No: 03.

Santosh Kumar Swain; Durga Prasad Mohapafrast
Case Generation from Behavioral UML Models”,
International Journal of Computer Applications (0975
8887) Volume 6— No0.8, September 2010.

Saurabh Srivastava, Sarvesh Kumar and Ajesmn#t
Verma, “OPTIMAL PATH SEQUENCING IN BASIS
PATH TESTING”, International Journal of Advanced
Computational Engineering and Networking, ISSN
(PRINT): 2320-2106, Volume - 1, Issue — 1, 2013.

systems.The proposed system based on MBT develogé0]Suppandeep Sandhu, Amardeep Singh, “A Systemat

more accurate all possible test paths due to gtnera
directly from XMl file instead of using the depemdy
table and dependency graph. The generated test pat
are validated with Cyclomatic Complexity. The
proposed system saves time in choosing the best tes
path because other optimization algorithms spemne ti
to calculate weight but the proposed approach does
need to evaluate weight. The proposed system ig mor
72

Approach for Software Test Cases Generation using
Gray Box Testing with UML Activity Diagrams” ,
IJCST Vol. 2, Iss ue 4, Oct . - Dec. 2011.

11] V.Mary Sumalatha and Dr G.S.V.P.Raju, “An Model

Based Test Case Generation Technique Using Genetic
Algorithms”, The International Journal of Computer
Science & Applications (TIJCSA) Volume 1, No. 9,
November 2012 ISSN — 2278-1080.

APPENDIX A

o =

Enter Login
details

[no] [ves]

T — T

=

Lock Account Send warning

email to user

Retrieve customer
Support status

Retrieve account
information

notifications ‘

—- - -

lPrEpare user @ [YES]{_I

Display Bill Pay
Screan

)

—

Assign Payee

Select Payee

Deny access
to account

Add account to
home screen

Display Home

Display Check
2 =

@

heck and

[transfer] [

View Account Transfer

ﬁxpon]

Export
Activity

return to

L3 Home Screen

— [assign]
Assign

Transaction
o =

[print]

Logout
W

Print
Statement

Figure 12. Activity Diagram for Online Banking System

73

