
68

A Proposed Test Path Generation Algorithm based on
UML Activity Diagram

Aye AyeKyaw, MyatMyat Min
University of Computer Studies, Mandalay

ayeayekyaw2009@gmail.com,myatiimin@gmail.com

Abstract

Software testing is an activity of finding defects
during execution time for a program so that non-
defect software can be got. Software testing plays a
vital role in developing software that is free from bugs
and defects. Manual test is a cost and time consuming
process although it may find many defects in a software
application. If the testing process could be automated,
the cost of developing software could be reduced
obviously within a minimum amount of time. The most
critical part of the testing process is generation of test
paths. The paper proposes an approach for automatic
Model-Based best test path generation. In this
approach, all possible test paths are directly generated
from XMI (XML Metadata Interchange)filebased on
the activity diagram and a test path from these
generated test paths is optimized. The proposed system
will reduce the processing time, and choose the best
test path without dependence on others.

1. Introduction

Software testing is an essential part of the
software development life cycle (SDLC). Software
testing is an activity that should be done throughout the
whole development process. Software organizations
spend nearly half of the total development time and
cost of the software in testing related activities.
Software testing should be performed efficiently and
effectively, within the budgetary and scheduled
limits.Testing can be performed on requirements;
design and implementation phase in the software
development life cycle. The most of disseminating
errors can be eliminated and prevented before to the
next phase if testing is performed in the initial phase in
SDLC.The efficient and effective approaches are
needed still although there are many existing automatic
test case generation approaches.

The testing process consists of three parts: test
case generation, test execution, and test evaluation.
Comparing with the other two parts, test case
generation is more challenging and difficult [2].

Generating test data from the high level design
notations has several advantages over code-based test
case design.Testing based on design models has the
advantage that the test cases remain valid even when
the code changes a little bit [8].

Several heuristic methods are available for
effectivegeneration of test cases. The heuristics can be
mainly dividedinto two categories: Black box testing
and White box testing.There are classified the testing
techniques generally as shown in figure 1.

The rest of the paper is organized as follows:
The next section discussesabout Model based testing.
The third section describes analysisof related works.
Section 4 shows the proposed model for Model-Based
test path generation. Section 5 presents a case study to
demonstrate the use of our methodology with the Login
Screen System and Online Banking System. The
paperconcludes with section 6.

Figure 1. General Classification of Test Techniques

69

2. Model-Based Testing

There are many testing strategy and among
them, some are Model-Based Testing (MBT) that
depends on extracting test cases from different models
(requirements models, usage models, and models
constructed from source code), Specification-based
testing (or black-box testing) that depends on
requirements models, and Program-based testing (or
white-box testing) that uses source code as the
underlying model [7].

In recent trend, Model-Based Testing becomes a
more popular approach among many researchers.
Model-Based Testing (MBT) is a type of testing
strategy that depends on extracting test cases from
different models (Requirement model, usage model and
model constructed from source code) [4]. MBT
promises (1)the detection of faults at an early stage in
the development cycleand (2)reduces the maintenance
effort of test scripts as the test cases human and cost
effort are minimized. MBT is seen usually as one form
of black-box testing. MBT is suited perfectly being
used in system, acceptance, and regression testing [5].
MBT have three main key technologies:
• Notation used for the model
• The test generation Diagram
•The tools that generate supporting infrastructure for
the tests [6].

In current, Model-Based test case attracts many
researchers by using some data mining concept to
produce an automated optimal test case.

Most of researchers have used the following
architecture for generating the test paths as shown in
Figure 2.

Figure 2. System Flow of Model Based Test Path
Generation

One or more UML diagrams are used as an
input, construct the dependency table based on these
diagrams, and then create dependency graph according
to the dependency table. Finally, generate all possible
test paths. Some use data mining algorithm to optimize
test path [3].

3. Related Works

In [1], Shantghi and Mohan Kumar proposed an
approach for generating test cases for object oriented
software that uses Tabu Search technique to design and

derive test cases. The Tabu search technique was
applied to generate optimal test case.

SaurabhSrivastava, Sarvesh Kumar and Ajeet
Kumar Verma proposed a technique for optimal path
sequencing in basis path testing. This approach is used
to generate optimal paths using control flow graph
(CFG) and Cyclomatic Complexity for finding the
number of feasible paths. This paper applied ant colony
optimization algorithm to prevent from selecting
infeasible path and also prioritize the feasible paths i.e.
which path is to be executed first to optimize time and
complexity. With great ease of the ant colony
optimization algorithm good results can be got and thus
basis path testing can be improved, but there are areas
where it can be extended such as if repetition of states
or nodes can be controlled which have multiple paths.
After execution of this algorithm, it automatically
selects the best path sequence [9].

Model Based Test Case Generation Technique
Using Genetic Algorithms presented by Mary
Sumalatha and Raju based on UML activity diagram.
Finding all paths genetic algorithm operations are
applied to obtain the best test case [11]. In case study
of their paper, the expected results should be
accurately. As the above generated new individuals are
not part of the generated paths, Path 1 is the best node
that is selected. By really Path 4 that is covered the
whole of system should be the best path.

Shanthi and Mohan Kumar [2] proposed a new
model based approach for automated test cases for
UML activity diagrams using genetic algorithm. With
the help of ADT test path are generated, by applying
the GA most prioritized test case are generated. For
each node, the number of incoming nodes and the
number of outgoing nodes are calculated and then
evaluate fitness values. Next, the initial test data is
selected by randomly. Lastly, the Prioritized test path is
generated. The generated test cases apply the branch
coverage criteria and the CyclomaticComplexity
coverage.

4. The Proposed Model

In this section, figure 3 illustrates the flow of the
automatic best test path generation by using the activity
diagram.

Figure 3. Architecture of the Proposed System

70

The proposed system uses the activity diagram
as an input for the automated algorithm of generating
test paths. The Modelio Software has the option of
exporting the UML diagram to XMI file. Figure 4
shows the proposed algorithm for automatic test path
generation.

Input: XMI file for Activity Diagram.

Output: all possible test paths and the best test path.

begin

k:=0; j:=0; countJoinIn:=0;

countForkOut:=0;countDecision:=0;

totalDecision:=total decision node of the AD;

TPkj++ := source node of InitialEdge.

myNode= target node of InitialEdge.

SearchEdge(myNode, InitialEdge);

OptimalTestPath().

end

Figure 4. Algorithm for Automatic Best Test Path
Generation

Figure 5 and Figure 6 describe the functions that
are used from the proposed algorithm. By using this
algorithm, the proposed system generates all possible
test paths based on the extracted information from XMI
file according to figure 5. And then, the system
optimizes the best test path among from these
generated test paths by using the OptimalTestPath
function as shown in figure 6. Finally, the generated
test paths validate with Cyclomatic Complexity.

SearchEdge(Node s, Edge ee)
 begin

nodeType := type of s node;
 If (nodeType != FinalNode&&
 (k<=totalDecision*2))

For each edge ei Є E // i=1,2,…,n
sNode := source node of edge ei;
tNode := target node of edge ei;
if (sNode== s)
if (nodeType==Action ||

nodeType==Merge)
Add s to TPkj++ ;

else if (nodeType==Fork)
countForkOut : = s.getCountNode();
countForkOut++;
 s.setCountNode(countForkOut);
if (countForkOut ==1)

Add s to TPkj++ ;
 endif

else if (nodeType==Join)

countJoinIn := s.getCountNode();
countJoinIn++;
s.setCountNode(countJoinIn);
if (countJoinIn == s.getCountIn())

Add s to TPkj++ ;
endif

else
if(countDecision<=totalDecision*2)

countDecision++;
 Add s to TPkj++ ;

endif
endif
SearchEdge(tNode, ei);

endif
endfor

else
Add s to TPkj++ ; k++;
countDecision := 0;
Set count for Fork node and Join node with 0;

endif
 end

Figure 5. Algorithm of function SearchEdge

OptimalTestPath()
begin
maxControlNode:= total control node of TP0;
maxTotalNode := total node of TP0 ;
BestPath := TP0 ;
for each test path TPi Є TP // i=1,2,…n.
curControlNode := total control node of TPi ;
curTotalNode := total node of TPi ;
if (curControlNode>maxControlNode)
 if (curTotalNode>= maxTotalNode)
BestPath := TPi ;
maxControlNode := curControlNode ;
maxTotalNode := curTotalNode ;
else
BestPath := TPi ;
maxControlNode := curControlNode ;
endif
endif
if (curControlNode == maxControlNode)
if (curTotalNode>= maxTotalNode)
BestPath := TPi ;
maxControlNode := curControlNode ;
maxTotalNode := curTotalNode ;
endif
endif
endfor
Display BestPath as the optimal test path;

end

Figure 6. Algorithm of function OptimalTestPath

71

5. Case Study

This section presents the case study of Login
Screen System and Online Banking System. Problem
statement for Login Screen System: Login screen
initially displays a message “Login here using your
Username and Password”. The user enters theusername
and password and the system checks if the entered
username and password are valid or not. If they
arevalid it displays the main page if wrongly entered it
checks the number of times login has been tried. If
thenumber of times the login is less than the number of
times feed in the system it displays “Invalid Login
PleaseTry again” or it displays “Sorry you have
exceeded the allowed number of login attempts”.The
activity diagram for the above problem is as shown in
Figure 7 which is created by modelio software.

Figure 7. Activity Diagram for Login Screen

In figure 8, the nodes and edges information of
the activity diagram is extracted from converted XMI
file of the activity diagram.

Figure 8. Converted XMI file from Activity
Diagram

Each node has node type, identity of node, node
name, identity of incoming edges, and identity of
outgoing edges. Each edge has edge type, identity of
edge, edge name, identity of source node, and identity
of target node. The number of node and edge, and
detailed information are shown in Figure 9.

Figure 9. Extracted the information details of
Activity Diagram

Based on these extracted information, all
possible test paths are generated directly from XMI file
by using the proposed algorithm. These generated test
paths are shown in Figure 10.

Figure 10. All Possible Test Paths

And then the best test path is optimized depend
on number of control nodes and number of total nodes
of each test path according to the propose algorithm.
The best test path is shown in Figure 11.

Figure 11. The Best Test Path

72

We can see that the number of predicates are
three,edges E are 9 and nodes N are 8, then the will be
asfollows:

testpathsNEV 32892 =+−=+−=

Then the upper bound of test paths that ensures the
fullactivity path coverage is 4 test paths which were
produced bythe proposed model. Since,

Branch coverage<=Cyclomatic complexity<=no. of paths

Therefore, the branch coveragecriteria, and the
Cyclomatic complexity coverage are applied by the
generated test cases.

The proposed approach is also evaluated by the
Activity diagram of Online Banking Systemshown in
the appendix A. When the information is extracted
from XMI file, the total node of the activity diagram is
51 nodes and the total edge is 59 edges. Finally, all
possible test paths that total test paths are 31 test paths;
and the best test path are generated.

The proposed system generates all test paths
directly from the input file without redundant test
paths. Compare the system of Suppandeep Sandhu and
Amardeep Singh, their system generate all possible test
paths via the final state transition table that created
from the input file for tax calculator activity diagram
[10]. The proposed system spends less nearly threefold
in execution time than the system of [10] for the same
input activity diagram.

As the proposed approach can generate all
possible test paths and the best test path for not only
small system but also large complex system, the
proposed approach is efficient and effective for any
system.However, in concurrent activities, the proposed
system also eliminates the redundant activities from
each test path.

6. Conclusion

Quality is the main focus of any software
engineering project.Software testing is an activity that
is performed for evaluating software quality and also
for improving it.Good software testers cannot avoid
models. MBT has emerged as a useful and efficient
testing method for realizing adequate test coverage of
systems.The proposed system based on MBT develops
more accurate all possible test paths due to generate
directly from XMI file instead of using the dependency
table and dependency graph. The generated test paths
are validated with Cyclomatic Complexity. The
proposed system saves time in choosing the best test
path because other optimization algorithms spend time
to calculate weight but the proposed approach does not
need to evaluate weight. The proposed system is more

efficient and effective in the software development,
because the human effort in finding bugs and
errors,and the steps at the evolution of generated test
paths are reduced.

References

[1] A.V.K. Shanthi, G. MohanKumar, “A Novel Approach
for Automated Test Path Generation using TABU
Search Algorithm”, International Journal of Computer
Applications (0975 – 888)Volume 48– No.13, June
2012.

[2] A.V.K. Shanthi, G. MohanKumar, “A Heuristic
Technique for Automated Test Cases Generation from
UML Activity Diagram”, Journal of Computer Science
and Applications. Volume 4, Number 2 (2012), pp. 75-
86.

[3] Aye Aye Kyaw; Myat Myat Min. “Model-Based
Automatic Optimal Test Path Generation via Search
Optimization Techniques: A Critical Review”. In
Proceedings of the 12th International Conference on
Computer Applications 2014.

[4] Aye Aye Kyaw and Myat Myat Min, "An Efficient
Approach for Model Based Test Path Generation,"
International Journal of Information and Education
Technology vol. 5, no. 10, pp. 763-767, 2015.

[5] “Certified Tester Foundation Level Syllabus”, Released
Version 2011, International Software Testing
Qualifications Board.

[6] Chanda Chouhan Vivek Shrivastava Parminder S Sodhi,
“Test Case Generation based on Activity Diagram for
Mobile Application”, International Journal of Computer
Applications (0975 – 8887)Volume 57– No.23,
November 2012.

[7] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed
Hashem and Mohamed F.Tolba, “A Proposed Test Case
Generation Technique Based on Activity Diagrams”,
International Journal of Engineering & Technology
IJET-IJENS Vol: 11 No: 03.

[8] Santosh Kumar Swain; Durga Prasad Mohapatra. “Test
Case Generation from Behavioral UML Models”,
International Journal of Computer Applications (0975 –
8887) Volume 6– No.8, September 2010.

[9] Saurabh Srivastava, Sarvesh Kumar and Ajeet Kumar
Verma, “OPTIMAL PATH SEQUENCING IN BASIS
PATH TESTING”, International Journal of Advanced
Computational Engineering and Networking, ISSN
(PRINT): 2320-2106, Volume – 1, Issue – 1, 2013.

[10]Suppandeep Sandhu, Amardeep Singh, “A Systematic
Approach for Software Test Cases Generation using
Gray Box Testing with UML Activity Diagrams” ,
IJCST Vol. 2, Iss ue 4, Oct . - Dec. 2011.

[11] V.Mary Sumalatha and Dr G.S.V.P.Raju, “An Model
Based Test Case Generation Technique Using Genetic
Algorithms”, The International Journal of Computer
Science & Applications (TIJCSA) Volume 1, No. 9,
November 2012 ISSN – 2278-1080.

73

APPENDIX A

Figure 12. Activity Diagram for Online Banking System

