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Abstract 
Image inpainting involves filling in 

part of an image using information from 

the surrounding area. Applications include 

the restoration of damaged photographs 

and movies and the removal of selected 

objects. A framework for image inpainting 

by using fast marching method is 

implemented in this paper. Firstly, the 

average smoothness weight average of the 

image is estimate of the input image. After 

the user selects the regions to be restored, 

this system has compute the distance map 

of the inpainted pixels to the boundary and 

then fills the pixels to the closest pixels to 

the known image area until up to fill  the 

all pixels of the selected area. This method 

is very simple to implement, fast and 

produces nearly identical results. 
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1. Introduction 
Applications range from removing 

objects from a scene to re-touching 

damaged paintings and photographs. The 

goal is to produce a revised image in 

which the inpainted region is seamlessly 

merged into the image in a way that is not 

detectable by a typical viewer. 

Traditionally, inpainting has been done by 

professional artists. For photography and 

film , inpainting is used to revert 

deterioration (e.g., cracks in photographs 

or scratches and dust spots in film), or to 

add or remove elements (e.g., removal of 

stamped date and redeye from 

photographs, the infamous “airbrushing” 

of political enemies [12]). A current active 

area of research is to automate digital 

techniques for inpainting . 

Local inpainting is used from the 

original image of information about the 

local neighbourhood of a pixel only. The 

problem of local inpainting as, given a 

region to be inpainted Ω and its boundary 

∂Ω, to synthesize pixel values from the 

boundary inwards, using neighbourhood 

pixel information to continue the 

inpainting process. 

These methods assume a prior 

information about the probability 

distribution of the relation between a pixel 

value and its neighbourhood, which will 

help fill in a pixel lying on the hole 

boundary. Also, other properties such as 

high smoothness, low total variation or 

low curvature are assumed to create the 

framework on which the actual algorithm 

runs. 

There are two significant 

approaches to local information based hole 

filling of images: 

(i) Based on Partial Differential Equations 

(ii) Based on convolution [13] 

Global inpainting is used from the 

global statistics to aid the local statistics. 

Inpainting based on global statistics is a 

fledgling concept but worth a mention here 

because it highlights a potential weakness 

in local inpainting. Local algorithms give 

identical completions when the immediate 

boundary of the hole is identical. Human 

visual system takes more global 

information into account.  

Global statistics are similarly 

important in painting restoration. The 

major drawback with respect to this paper 

is that the algorithm does not perform well 

with natural textures as seen in 

photographs. It captures the .look. of a 

training image in a probability distribution 

over images, using image histograms. 

Probability of an image is defined by 

means of a small number of sufficient 
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statistics or features, each of which can be 

evaluated at an arbitrary location in the 

image. 

In this paper, a framework for 

image inpainting based on fast marching 

method is implemented. Related works 

concerning with image inpainting are 

presented in section 2. In section 3, Fast 

Marching Method is presented. System 

Design of image inpainting based on FMM 

is expressed in section 4. In section 5, the 

implementation is presented and are 

expressed in section 6.  

 

2. Related Works 
 

M. Bertalmio et.l implemented 

image inpainting which involves filling in 

part of an image or video using 

information from the surrounding area. 

Their approach used ideas from classical 

fluid dynamics to propagate isophote lines 

continuously from the exterior into the 

region to be inpainted and the method was 

directly based on the Navier-Stokes 

equations for fluid dynamics, which has 

the immediate advantage of well-

developed theoretical and numerical 

results [9]. 

G.Suneet et.l presented the 

inpainting which filled the damaged region 

or “holes” in an image with surrounding 

color and texture information. Their 

algorithm was based on solving Laplace 

equation with Dirichlet boundary 

conditions, incorporated with texture 

filling, and its main asset was the bounded 

search window. [5] 

A. Criminisi et.l expressed two 

classes algorithms which have been 

addressed texture synthesis algorithms for 

generating large image regions from 

sample textures and inpainting techniques 

for filling in small image gaps. They 

introduced exemplar-based texture 

synthesis contains the essential process 

required to replicate both texture and 

structure and The actual colour values are 

computed using exemplar-based synthesis. 

[1] 

A. Telea explained digital 

inpainting which provided a means for 

reconstruction of small damaged portions 

of an image. Their method was based on 

the fast marching method for level set 

applications. [3] 

Image inpainting is the time-tested 

art of removing defects from pictures. 

Defects are arbitrarily defined by the user 

and vary from a scratch on an old family 

photograph to graffiti on an otherwise 

appealing scene to completely removing 

small objects from a scene. Professional 

artists have long practiced inpainting, with 

considerable expense and considerable 

effort. 

Inpanting has been studied with 

various forms in research field. The 

various forms of inpainting applications 

are: 

(1) Image restoration (Repairing 

images physically damaged by 

tears, stains, scratches, writing, etc) 

(2) Correction (Fixing undesirable 

artifacts such as read eyes, flash 

reflection, blemish, wrinkles, etc ) 

(3) Wireless image transmission (Lost 

data recovering) and 

(4) Special effect (Removing object) 
 

3. Fast Marching Method 

To inpaint the whole Ω, we 

iteratively apply Equation 1 to all the 

discrete pixels of ∂Ω, in increasing 

distance from ∂Ω’s initial position ∂Ωi, 

and advance the boundary inside Ω until 

the whole region has been inpainted. 
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Where Ω is region to be inpainted. ∂Ω is 

the boundary of the region to be inpainted. 

)( pB is neighborhood of size. I(q) is 

original image. I(p) is inpainted image. 

(1) 
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In brief, the FMM is an algorithm 

that solves the Eikonal equation: 

 

|T| = 1 on Ω, with T = 0 on ∂Ω   (2) 

The solution T of Equation 3 is the 

distance map of the Ω pixels to the 

boundary ∂Ω. The level sets, or isolines, 

of T are exactly the successive boundaries 

∂Ω of the shrinking Ω that we need for 

inpainting. The normal N to ∂Ω, also 

needed for inpainting, is exactly T. The 

FMM guarantees that pixels of ∂Ω are 

always processed in increasing order of 

their distanceto-boundary T , i.e., that the 

closest pixels to the known image area are 

inpainted frist. 

The FMM over other 

Distance Transform (DT) methods that 

compute the distance map T to a boundary 

∂Ω is described. The FMM’s main 

advantage is that it explicitly maintains the 

narrow band that separates the known 

from the unknown image area and 

specifies which is the next pixel to inpaint. 

Other DT methods compute the distance 

map T but do not maintain an explicit 

narrow band. Adding a narrow band 

structure to these methods would 

complicate their implementation, whereas 

the FMM provides this structure by 

default. To explain our use of the FMM in 

detail–and since the FMM is not 

straightforward to implement from the 

reference literature. The FMM maintains a 

so-called narrow band of pixels, which is 

exactly our inpainting boundary ∂Ω.  For 

every image pixel, we store its value T, its 

image gray value I (both represented as 

floating-point values), and a flag f that 

may have three values: 

 BAND: the pixel belongs to the narrow 

band. Its T value undergoes update. 

 KNOWN: the pixel is outside ∂Ω, in 

the known image area. Its T and 

I values are known. 

 INSIDE: the pixel is inside ∂Ω, in the 

region to inpaint. Its T and I 

values are not yet known. 

The FMM has an initialization and 

propagation phase as follows. First, we set 

T to zero on and outside the boundary ∂Ω 

of the region to inpaint and to some large 

value inside, and initialize f over the whole 

image as explained above. All BAND 

points are inserted in a heap NarrowBand 

sorted in ascending order of their T values. 

Next, we propagate the T, f, and I values 

using the code shown in the following 

algorithm. 
 

while (NarrowBand not empty) 

{ 

extract P(i,j) = head(NarrowBand);  

  /* STEP 1 */ 

f(i,j) = KNOWN; 

for (k,l) in (i1,j),(i,j1),(i+1,j),(i,j+1) 

if (f(k,l)!=KNOWN) 

{ 

if (f(k,l)==INSIDE) 

{ 

f(k,l)=BAND;                        /* STEP 2 */ 

inpaint(k,l);    

     /* STEP 3 

*/ 

} 

T (k,l) = min(solve(k1,l,k,l1),     /* STEP 4 

*/ 

solve(k+1,l,k,l1), 

solve(k1,l,k,l+1), 

solve(k+1,l,k,l+1)); 

insert(k,l) in NarrowBand;  /* STEP 5 

*/ 

} 

} 

float solve(int i1,int j1,int i2,int j2) 

{ 

float sol = 1.0e6; 

if (f(i1,j1)==KNOWN) 

if (f(i2,j2)==KNOWN) 

{ 

 

float r = 

sqrt(2(T(i1,j1)T(i2,j2))*(T(i1,j1)T(i2,j2))); 

float s = (T(i1,j1)+T(i2,j2)r)/2; 

(2) 
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if (s>=T(i1,j1) && s>=T(i2,j2)) sol = s; 

else 

{ s += r; if (s>=T(i1,j1) && s>=T(i2,j2)) 

sol = s; } 

 

} 

else sol = 1+T(i1,j1)); 

else if (f(i2,j2)==KNOWN) sol = 

1+T(i1,j2)); 

return sol; 

 

} 

 

Step 1 extracts the BAND point with the 

smallest T. Step 2 marches the boundary 

inward by adding new points to it. Step 3 

performs the inpainting. Step 4 propagates 

the value T of point (i, j) to its neighbors 

(k, l) by solving the finite difference 

discretization of Equation 3 given by 

 

max(D−xT, −D+xT, 0) 2 +  

 

max(D−yT, −D+yT, 0) 2 = 1             

 

where D−xT(i, j) = T(i, j) − T(i − 1, j) and 

D+xT (i, j) = T(i+1, j) − T (i, j) and 

similarly for y. Following the upwind idea 

of Sethian, it can be solved by Equation 

3.4 for (k, l)’s four quadrants and retain 

the smallest solution. Finally, Step 5 

(re)inserts (k, l) with its new T in the heap. 

 

4. System Design of Image 

Inpainting based on FMM 
 

In this paper, image inpainting 

based on FMM is implemented. Image 

inpainting is the process of filling in 

missing data in a designated region of a 

still or video image. Applications range 

from removing objects from a scene to re-

touching damaged paintings and 

photographs. The goal is to produce a 

revised image in which the inpainted 

region is seamlessly merged into the image 

in a way that is not detectable by a typical 

viewer. System design of image inpainting 

based on fast marching method is shown in 

figure 1. 

There are four components in the 

inpainting based on fast marching method. 

They are : 

(i) Estimate the average smoothness 

weight average function 

(ii) Select inpainted region 

(iii) Compute distance map T of the 

inpainted pixels to the boundary 

(iv) Fast marching method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. System Design 

 

Input image is RGB (red, green, 

blue) light. Although all colors of the 

visible spectrum can be produced by 

merging red, green and blue light, 

monitors are capable of displaying only a 

limited gamut (i.e., range) of the visible 

spectrum. File format is .jpg format. 

In the estimate the image 

smoothness component, it is estimated the 

smoothness as a weighted average over a 

known image neighborhood of the pixel to 

inpaint. Grayscale intensity vaules of the 

known image are calculated in this step. 

And then the desired inpainting 

region is selected in the select inpainted 

region component. The image intensity 

function plays the role of the stream 

Input Image

(RGB)

Estimate the image

smoothness

Weight average function

Select  Inpainted Region

Inpainted Output image

Compute Distance Map

T of the Inpainted Pixels

to the Boundary

Fast Marching Method

(3) 
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function whose isophote lines define 

streamlines of the flow. After the user 

selects the regions to be restored, the 

algorithm automatically transports 

information into the inpainting region. 

In the Compute distance map T of 

the inpainted pixels to the boundary 

component, the Fast Marching Method 

(FMM) is an algorithm that solves the 

Eikonal equation in equation 3. The 

solution T of equation 3 is the distance 

map of the Ω pixels to the boundary ∂Ω. 

The level sets, or isolines, of T are exactly 

the successive boundaries ∂Ω of the 

shrinking Ω that is required for inpainting. 

The normal N to ∂Ω, also needed for 

inpainting, is exactly ∇T. The FMM 

guarantees that pixels of ∂Ω are always 

processed in increasing order of their 

distanceto-boundary T. Distance 

Transform (DT) methods compute the 

distance map T to a boundary ∂Ω.  

Since FMM inpainting algorithm is 

designed for both restoration of damaged 

photographs and for removal of undesired 

objects on the image, the regions to be 

inpainted must be marked by the user.  

 

5. Implementation 
Image Inpainting based on Fast 

Marching Method is implemented in this 

system. There are four Menus: File Menu, 

Estimate Weight Function Menu, Compute 

Menu and Fast Marching Method Menu. 

Loaded original image (300X225) 

is shown in figure 2 which has noise 

yellow line exists and estimate weight of 

grayscale image is shown in figure 3. 

Here, gray value of yellow nose line is 

calculated for noise removing. 

 

 
Figure 2. Loaded Original Image 

 

If the user is selected in noise region of 

grayscale image is as shown in figure 4, 

the algorithm is recognized in this selected 

portion (150X100). And the level set or 

yellow lines of pixels are computed to the 

boundary of the grayscale images. In this 

implementation, the number of iteration is 

2000 times is computed and inpainted in 

the grayscale image. The inpainted output 

image is as shown in figure 5. 

 

 
Figure 3. Estimate Weight of 

 Grayscale Image 

 
Figure 4. Select Region of  

Grayscale Image 
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Figure 5. Inpainted Image 

 If the number of iteration is less 

than the number of pixels of selection 

portion, the noise of yellow lines remains 

in the inpainted image as shown in figure 

6. The number of iteration is 1000. Figure 

6 (a), (b), (c) and (d) are original image, 

grayscale image, selected region and 

inpainted image respectively. 

 

 

 
 

 
 

 
6. Conclusion 

In this paper, a framework 

for image inpainting by using fast 

Marching method is implemented and 

tested with 100 images. Grayscale images 

have to be converted from RGB color 

images. Therefore, it doesn’t take runtime 

in this implementation. The tested images 

have low resolution and noises are same 

color. If the different color noise are used 

in the original image, the result inpainted 

image is no good result. Any condition 

noises will be restored in further extension.  
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