
 1

Framework for Image Inpainting by using Fast Marching Method
Hsint Hsint Htay, May Phyo Oo

Computer University, Loikaw

hsinthsinthhh@gmail.com, mayphyooo@gmail.com

Abstract
Image inpainting involves filling in

part of an image using information from

the surrounding area. Applications include

the restoration of damaged photographs

and movies and the removal of selected

objects. A framework for image inpainting

by using fast marching method is

implemented in this paper. Firstly, the

average smoothness weight average of the

image is estimate of the input image. After

the user selects the regions to be restored,

this system has compute the distance map

of the inpainted pixels to the boundary and

then fills the pixels to the closest pixels to

the known image area until up to fill the

all pixels of the selected area. This method

is very simple to implement, fast and

produces nearly identical results.

Keywords: Image Inpainting, Fast

Marching Method

1. Introduction
Applications range from removing

objects from a scene to re-touching

damaged paintings and photographs. The

goal is to produce a revised image in

which the inpainted region is seamlessly

merged into the image in a way that is not

detectable by a typical viewer.

Traditionally, inpainting has been done by

professional artists. For photography and

film , inpainting is used to revert

deterioration (e.g., cracks in photographs

or scratches and dust spots in film), or to

add or remove elements (e.g., removal of

stamped date and redeye from

photographs, the infamous “airbrushing”

of political enemies [12]). A current active

area of research is to automate digital

techniques for inpainting .

Local inpainting is used from the

original image of information about the

local neighbourhood of a pixel only. The

problem of local inpainting as, given a

region to be inpainted Ω and its boundary

∂Ω, to synthesize pixel values from the

boundary inwards, using neighbourhood

pixel information to continue the

inpainting process.

These methods assume a prior

information about the probability

distribution of the relation between a pixel

value and its neighbourhood, which will

help fill in a pixel lying on the hole

boundary. Also, other properties such as

high smoothness, low total variation or

low curvature are assumed to create the

framework on which the actual algorithm

runs.

There are two significant

approaches to local information based hole

filling of images:

(i) Based on Partial Differential Equations

(ii) Based on convolution [13]

Global inpainting is used from the

global statistics to aid the local statistics.

Inpainting based on global statistics is a

fledgling concept but worth a mention here

because it highlights a potential weakness

in local inpainting. Local algorithms give

identical completions when the immediate

boundary of the hole is identical. Human

visual system takes more global

information into account.

Global statistics are similarly

important in painting restoration. The

major drawback with respect to this paper

is that the algorithm does not perform well

with natural textures as seen in

photographs. It captures the .look. of a

training image in a probability distribution

over images, using image histograms.

Probability of an image is defined by

means of a small number of sufficient

mailto:hsinthsinthhh@gmail.com
mailto:mayphyooo@gmail.com

 2

statistics or features, each of which can be

evaluated at an arbitrary location in the

image.

In this paper, a framework for

image inpainting based on fast marching

method is implemented. Related works

concerning with image inpainting are

presented in section 2. In section 3, Fast

Marching Method is presented. System

Design of image inpainting based on FMM

is expressed in section 4. In section 5, the

implementation is presented and are

expressed in section 6.

2. Related Works

M. Bertalmio et.l implemented

image inpainting which involves filling in

part of an image or video using

information from the surrounding area.

Their approach used ideas from classical

fluid dynamics to propagate isophote lines

continuously from the exterior into the

region to be inpainted and the method was

directly based on the Navier-Stokes

equations for fluid dynamics, which has

the immediate advantage of well-

developed theoretical and numerical

results [9].

G.Suneet et.l presented the

inpainting which filled the damaged region

or “holes” in an image with surrounding

color and texture information. Their

algorithm was based on solving Laplace

equation with Dirichlet boundary

conditions, incorporated with texture

filling, and its main asset was the bounded

search window. [5]

A. Criminisi et.l expressed two

classes algorithms which have been

addressed texture synthesis algorithms for

generating large image regions from

sample textures and inpainting techniques

for filling in small image gaps. They

introduced exemplar-based texture

synthesis contains the essential process

required to replicate both texture and

structure and The actual colour values are

computed using exemplar-based synthesis.

[1]

A. Telea explained digital

inpainting which provided a means for

reconstruction of small damaged portions

of an image. Their method was based on

the fast marching method for level set

applications. [3]

Image inpainting is the time-tested

art of removing defects from pictures.

Defects are arbitrarily defined by the user

and vary from a scratch on an old family

photograph to graffiti on an otherwise

appealing scene to completely removing

small objects from a scene. Professional

artists have long practiced inpainting, with

considerable expense and considerable

effort.

Inpanting has been studied with

various forms in research field. The

various forms of inpainting applications

are:

(1) Image restoration (Repairing

images physically damaged by

tears, stains, scratches, writing, etc)

(2) Correction (Fixing undesirable

artifacts such as read eyes, flash

reflection, blemish, wrinkles, etc)

(3) Wireless image transmission (Lost

data recovering) and

(4) Special effect (Removing object)

3. Fast Marching Method

To inpaint the whole Ω, we

iteratively apply Equation 1 to all the

discrete pixels of ∂Ω, in increasing

distance from ∂Ω’s initial position ∂Ωi,

and advance the boundary inside Ω until

the whole region has been inpainted.












)(

)(

),(

)])(()()[,(
)(

pBq

pBq

qpw

qpqIqIqpw
PI





Where Ω is region to be inpainted. ∂Ω is

the boundary of the region to be inpainted.

)(pB is neighborhood of size. I(q) is

original image. I(p) is inpainted image.

(1)

 3

In brief, the FMM is an algorithm

that solves the Eikonal equation:

|T| = 1 on Ω, with T = 0 on ∂Ω (2)

The solution T of Equation 3 is the

distance map of the Ω pixels to the

boundary ∂Ω. The level sets, or isolines,

of T are exactly the successive boundaries

∂Ω of the shrinking Ω that we need for

inpainting. The normal N to ∂Ω, also

needed for inpainting, is exactly T. The

FMM guarantees that pixels of ∂Ω are

always processed in increasing order of

their distanceto-boundary T , i.e., that the

closest pixels to the known image area are

inpainted frist.

The FMM over other

Distance Transform (DT) methods that

compute the distance map T to a boundary

∂Ω is described. The FMM’s main

advantage is that it explicitly maintains the

narrow band that separates the known

from the unknown image area and

specifies which is the next pixel to inpaint.

Other DT methods compute the distance

map T but do not maintain an explicit

narrow band. Adding a narrow band

structure to these methods would

complicate their implementation, whereas

the FMM provides this structure by

default. To explain our use of the FMM in

detail–and since the FMM is not

straightforward to implement from the

reference literature. The FMM maintains a

so-called narrow band of pixels, which is

exactly our inpainting boundary ∂Ω. For

every image pixel, we store its value T, its

image gray value I (both represented as

floating-point values), and a flag f that

may have three values:

 BAND: the pixel belongs to the narrow

band. Its T value undergoes update.

 KNOWN: the pixel is outside ∂Ω, in

the known image area. Its T and

I values are known.

 INSIDE: the pixel is inside ∂Ω, in the

region to inpaint. Its T and I

values are not yet known.

The FMM has an initialization and

propagation phase as follows. First, we set

T to zero on and outside the boundary ∂Ω

of the region to inpaint and to some large

value inside, and initialize f over the whole

image as explained above. All BAND

points are inserted in a heap NarrowBand

sorted in ascending order of their T values.

Next, we propagate the T, f, and I values

using the code shown in the following

algorithm.

while (NarrowBand not empty)

{

extract P(i,j) = head(NarrowBand);

 /* STEP 1 */

f(i,j) = KNOWN;

for (k,l) in (i1,j),(i,j1),(i+1,j),(i,j+1)

if (f(k,l)!=KNOWN)

{

if (f(k,l)==INSIDE)

{

f(k,l)=BAND; /* STEP 2 */

inpaint(k,l);

 /* STEP 3

*/

}

T (k,l) = min(solve(k1,l,k,l1), /* STEP 4

*/

solve(k+1,l,k,l1),

solve(k1,l,k,l+1),

solve(k+1,l,k,l+1));

insert(k,l) in NarrowBand; /* STEP 5

*/

}

}

float solve(int i1,int j1,int i2,int j2)

{

float sol = 1.0e6;

if (f(i1,j1)==KNOWN)

if (f(i2,j2)==KNOWN)

{

float r =

sqrt(2(T(i1,j1)T(i2,j2))*(T(i1,j1)T(i2,j2)));

float s = (T(i1,j1)+T(i2,j2)r)/2;

(2)

 4

if (s>=T(i1,j1) && s>=T(i2,j2)) sol = s;

else

{ s += r; if (s>=T(i1,j1) && s>=T(i2,j2))

sol = s; }

}

else sol = 1+T(i1,j1));

else if (f(i2,j2)==KNOWN) sol =

1+T(i1,j2));

return sol;

}

Step 1 extracts the BAND point with the

smallest T. Step 2 marches the boundary

inward by adding new points to it. Step 3

performs the inpainting. Step 4 propagates

the value T of point (i, j) to its neighbors

(k, l) by solving the finite difference

discretization of Equation 3 given by

max(D−xT, −D+xT, 0) 2 +

max(D−yT, −D+yT, 0) 2 = 1

where D−xT(i, j) = T(i, j) − T(i − 1, j) and

D+xT (i, j) = T(i+1, j) − T (i, j) and

similarly for y. Following the upwind idea

of Sethian, it can be solved by Equation

3.4 for (k, l)’s four quadrants and retain

the smallest solution. Finally, Step 5

(re)inserts (k, l) with its new T in the heap.

4. System Design of Image

Inpainting based on FMM

In this paper, image inpainting

based on FMM is implemented. Image

inpainting is the process of filling in

missing data in a designated region of a

still or video image. Applications range

from removing objects from a scene to re-

touching damaged paintings and

photographs. The goal is to produce a

revised image in which the inpainted

region is seamlessly merged into the image

in a way that is not detectable by a typical

viewer. System design of image inpainting

based on fast marching method is shown in

figure 1.

There are four components in the

inpainting based on fast marching method.

They are :

(i) Estimate the average smoothness

weight average function

(ii) Select inpainted region

(iii) Compute distance map T of the

inpainted pixels to the boundary

(iv) Fast marching method

Figure 1. System Design

Input image is RGB (red, green,

blue) light. Although all colors of the

visible spectrum can be produced by

merging red, green and blue light,

monitors are capable of displaying only a

limited gamut (i.e., range) of the visible

spectrum. File format is .jpg format.

In the estimate the image

smoothness component, it is estimated the

smoothness as a weighted average over a

known image neighborhood of the pixel to

inpaint. Grayscale intensity vaules of the

known image are calculated in this step.

And then the desired inpainting

region is selected in the select inpainted

region component. The image intensity

function plays the role of the stream

Input Image

(RGB)

Estimate the image

smoothness

Weight average function

Select Inpainted Region

Inpainted Output image

Compute Distance Map

T of the Inpainted Pixels

to the Boundary

Fast Marching Method

(3)

 5

function whose isophote lines define

streamlines of the flow. After the user

selects the regions to be restored, the

algorithm automatically transports

information into the inpainting region.

In the Compute distance map T of

the inpainted pixels to the boundary

component, the Fast Marching Method

(FMM) is an algorithm that solves the

Eikonal equation in equation 3. The

solution T of equation 3 is the distance

map of the Ω pixels to the boundary ∂Ω.

The level sets, or isolines, of T are exactly

the successive boundaries ∂Ω of the

shrinking Ω that is required for inpainting.

The normal N to ∂Ω, also needed for

inpainting, is exactly ∇T. The FMM

guarantees that pixels of ∂Ω are always

processed in increasing order of their

distanceto-boundary T. Distance

Transform (DT) methods compute the

distance map T to a boundary ∂Ω.

Since FMM inpainting algorithm is

designed for both restoration of damaged

photographs and for removal of undesired

objects on the image, the regions to be

inpainted must be marked by the user.

5. Implementation
Image Inpainting based on Fast

Marching Method is implemented in this

system. There are four Menus: File Menu,

Estimate Weight Function Menu, Compute

Menu and Fast Marching Method Menu.

Loaded original image (300X225)

is shown in figure 2 which has noise

yellow line exists and estimate weight of

grayscale image is shown in figure 3.

Here, gray value of yellow nose line is

calculated for noise removing.

Figure 2. Loaded Original Image

If the user is selected in noise region of

grayscale image is as shown in figure 4,

the algorithm is recognized in this selected

portion (150X100). And the level set or

yellow lines of pixels are computed to the

boundary of the grayscale images. In this

implementation, the number of iteration is

2000 times is computed and inpainted in

the grayscale image. The inpainted output

image is as shown in figure 5.

Figure 3. Estimate Weight of

 Grayscale Image

Figure 4. Select Region of

Grayscale Image

 6

Figure 5. Inpainted Image

 If the number of iteration is less

than the number of pixels of selection

portion, the noise of yellow lines remains

in the inpainted image as shown in figure

6. The number of iteration is 1000. Figure

6 (a), (b), (c) and (d) are original image,

grayscale image, selected region and

inpainted image respectively.

6. Conclusion

In this paper, a framework

for image inpainting by using fast

Marching method is implemented and

tested with 100 images. Grayscale images

have to be converted from RGB color

images. Therefore, it doesn’t take runtime

in this implementation. The tested images

have low resolution and noises are same

color. If the different color noise are used

in the original image, the result inpainted

image is no good result. Any condition

noises will be restored in further extension.

References
[1] A. Criminisi, P.P. erez and K.

Toyama, “ Region Filling and Object

Removal by Exemplar-Based Image

Inpainting”, IEEE Transactions on

Image Processing, Vol.13, No.9,

September 2004.

[2] A. P. Witkin, “Scale-space filtering”,

Proceedings International Joint

Conference on Artificial Inteligence,

pages 1019 - 1022, 1983.

[3] A. Telea, “ An Image Inpainting

Technique Based on the Fast

Marching Method”, Journals of

Graphics Tools, Vol.9, No.1, 25-36.

[4] A.A. Farag and M.S. Hassouna,

“Theoretical Foundations of

Tracking Monotonically Advancing

Fronts Using Fast Marching Level

Set Method”, Technical Report,

Computer Vision and Image

Processing Laboratory, February

2005.

[5] G.Suneet, M. Ankush and G. Sumit,

“ A Unified Approach for Digital

Image Inpainting Using Bounded

Search Spact”.

[6] http://www.eecs.harvard.edu/~sanjay

/inpainting/

[7] J. A. Sethian. “A Fast Marching

Level Set Method for Monotonically

Advancing Fronts.” Proc. Nat. Acad.

Sci. 93:4 (1996), 1591—1595.

[8] J. A. Sethian. Level Set Methods and

Fast Marching Methods, Second

edition. Cambridge, UK: Cambridge

Univ. Press, 1999.

[9] M. Bertalmio, A. L. Bertozzi, and G.

Sapiro. “Navier-Stokes, Fluid

Dynamics, and Image and Video

Inpainting.” In Proc. ICCV 2001, pp.

1335-1362, IEEE CS Press 1.

[CITY]: [PUB], 2001.

Figure 6(a)

Figure 6(b)

Figure 6(c)

Figure 6(d)

 7

[10] M. Bertalmio, G. Sapiro, V. Caselles,

C. Ballester, “Image Inpainting”,

SIGGRAPH 2000, pages 417-424.

[11] M. Oliveira, B. Bowen, R. McKenna,

and Y. -S. Chang. “Fast Digital

Image Inpainting.” In Proc. VIIP

2001, pp. 261—266, [CITY]: [PUB],

2001.

[12] P. Ninad “ Digital Image Restoration

Techniques And Automation”,

Project.

[13] R.Holm, “ Image Inpainting using

Nonlinear Partial Differential

Equations”, Thesis in Applied

Mathematics.

[14] T. Chan and J. Shen. “Mathematical

Models for Local Non-Texture

Inpaintings.” Technical Report CAM

00-11, Image Processing Research

Group, UCLA, 2000.

[15] T. Chan and J. Shen. “Non-Texture

Inpainting by Curvature-Driven

Diffusions (CDD).” Technical

Report CAM 00-35, Image

Processing Research Group, UCLA,

2000.

