

97

A Semantic Mapping Approach for Transforming
DTD into RDFS/OWL

 Win Lai Hnin, Khin Nweni Tun

University of Computer Studies, Yangon, Myanmar
winlaihnin.84@gmail.com,knntun@gmail.com

Abstract

 XML (eXtensible Markup Language) and its
schema language are becoming a primary data
exchange format on the current web. In the next
generation of the Semantic Web, the drawbacks of
XML and its schema are appeared. Most data on the
Web, however, is in the XML format, but using XML
requires applications to understand the format of
each data source that they access. To achieve the
benefits of the Semantic Web involves transforming
XML into the Semantic Web language, RDFS/OWL, a
process that generally has manual or only semi-
automatic components. This paper proposes a set of
rules to map DTD to RDFS ontology. This approach
mainly considers the constraints of DTD to map
RDFS/OWL. Constraints are a fundamental part of
the semantics of the data. So, this approach is to
ensure the integrity of the structure and provide more
meaning for the original DTD while transforming
them into RDF Schema.

1. Introduction

 In the recent years, XML has reached a wide
acceptance as the relevant standardization for storing
and exchanging data on the Web. When two
participants agree on the XML data format, they
begin to transfer and receive data from each others.
To support for this trading, XML documents are often
built based on their given schemas, which are
expressed in DTD (Document Type Definition) or
XML Schema. Actually, a DTD or XML Schema
contains the knowledge of a structure, data type and
relationship among elements in XML documents. In
comparing to XML Schema, DTD is the earlier
schema language for XML. It is more compact and
higher readable than XML Schema. This method
targets on DTD, utilizes its declarations to produce
suitable mapping rules.
 Although XML plays an important role in
structuring the document, it has disadvantages to use
in the semantic interoperability. XML mainly focuses

on the grammar but there is no way to describe the
semantics of the document. So, XML data cannot
directly use for the Semantic Web, and need another
language to interpret this data.
 Though, the meaning in the Semantic Web is
mostly represented by Resource Description
Framework (RDF). RDF encrypts these meanings in
the sets of triples that build meaningful webs about
related things. These are recognized by the
Universal Resource Identifiers (URIs) which tie
meanings to a unique definition so that users can
easily find them and their relationships on the web.
Our main contribution is a set of rules that transform
DTD into RDF Schema.
 When a data schema is transformed, the
corresponding data instances, queries and constraints
must also be adapted. In this paper, XML DTD
extend with several classes of the constraints range
over keys, foreign keys, fixed constraints,
enumeration constraints, content constraints as well
as cardinality constraints for capturing the semantics
of object identities.
They improve semantic specifications and provide a
better reference mechanism for native XML
application.
 The remainder of this paper is organized as
follows. Section 1.1 briefly introduces the related
work. Section 2 defines the overview of the proposed
system. Section 2.1 describes a set of rules for
mapping DTD to RDFS ontology. Section 3 describes
the discussion, implementation and evaluation of the
proposed system. Finally, section 4 concludes this
paper.

1.1 Related Work

 Several approaches related to schema mapping
have been proposed. This section summarizes and
analyzes the strength and weakness of these
approaches. Based on such examining, we proposed a
more comprehensive and efficient solutions for
transforming DTD into RDF Schema.
 M. Ferdinand et al. [12] proposed direct
mappings from XML Schema to OWL as well as they

98

described mappings from XML to RDF graphs, but
these mappings are independent of each other, i.e.,
the generated instances do not necessarily respect the
ontology created from the XML Schema. The XML
schema to OWL mapping process is based on a set of
interpretation and transforming rules from XML
Schema to OWL. The mappings proposed in this
approach is intended to be applied for the engineering
of web applications. This approach does not tackle
the question how to create the OWL model, if no
XML Schema is available.
 P.T.T. Thuy et al. [13] proposed a procedure for
transforming valid XML documents into RDF via
RDF Schema. This procedure derived classes and
properties from XSD, then matched them with
elements in XML documents and interpreted all XML
data as RDF statements. However, in order to
describe the relationship between parent class and
child class, the authors defined new RDF vocabulary,
rdfx:contain. This definition is not recognized by the
RDF evaluation tools or Semantic Web applications.
Therefore, the proposed method use existing RDF
vocabularies by using rdfs:Container. So, the result of
this approach is used directly on the Web without any
changes.
 Cruz et al. [4] proposed an approach to integrate
heterogeneous XML sources using ontology-based
mediation architecture. The ontology integration
process contained two steps: schema transformation
and ontology merging. In the first step, RDFS is used
to model each XML source as a local RDF ontology
to achieve a uniform representation basis for the
ontology merging step. The transformation from
XML to RDF is done as follows: complex-type
elements are transformed to rdfs:Class, attributes and
simple-type elements are transformed to
rdfs:Property, and element-subelement relationship is
encoded as a class-to- class relationship using a new
defined RDFS predicate “rdfx:contain”. In this work
the resulting ontology is somehow semantically-poor,
since it is based on RDF, and because of the way used
to represent element-subelement relationship (using
“rdfx:contain”).
 This paper proposes a strategy to map DTD to
RDF Schema. The proposed method takes into
account complex cases arising from different DTD
design style. This method also provides a set of
mapping bridges between the entities of the XML
source and the created RDF ontology.

2. Overview of the Proposed System

 The transforming framework of
DTD2RDFS/OWL is shown in Figure 1. Having
DTD as input, a mapping process converts all DTD
components to RDFS/OWL which captures the
semantic and maintains the constraints of the element
names, attribute names, data types and other
declaration of DTD. Moreover, RDFS/OWL is better
than the DTD by adding definition of the meaning
and relationship between elements in DTD. During
this stage, the proposed method also checks and
solves the problem whether the next element has the
same name with the previous one, if it does, these
elements are renamed.

Figure 1: A Framework for Transforming XML into
RDF

2.1 Mapping DTD to RDFS/OWL

 In this section, the propose method presents the
rules for the mapping of the DTD to RDFS/OWL.
This method tends to convert every DTD element and
attribute to class and property in the RDFS/OWL.
The result of this mapping is an RDFS/OWL that
maintains the structure and captures the semantics of
the DTD.

 Creating RDF Schema includes:
(a) Class description: containing rdfs:comment
 (class name + “class”) - human readable
 description of the resource – and
 rdfs:Container (describing the resource
 is a subclass of a class).
(b) Property description: holding rdfs:domain-
 indicates the class which this property is

 described for – and rdfs:range – indicates
 a class which values of the property must
 be members or a data type.
 The idea of this step is as follows:

Root element: Element defined by <!DOCTYPE> in
DTD is mapped to the root-class of RDF schema,
which is the first classdeclared by rdfs:Class.
Class (rdfs:Class): A DTD is made up of three main
building blocks: ELEMENT, ATTLIST
and ENTITY. ELEMENT is the main building block
of XML documents. In the DTD, XML elements are

99

declared with an ELEMENT. An element definition
has the following syntax:
<! ELEMENT element-name (element-content)>

element-content may be EMPTY, or data type, or
sequences of children. Because ELEMENT is used to
describe elements of a document and each element
can contain children elements, the function of these
elements is like a class in a structure program,
therefore this element will be considered as RDF
class. Each rdfs:Class is represented by a unique
identifier, rdf:ID. <!DOCTYPE catalog[

<!ELEMENT catalog (journal+)>
<!ELEMENT journal (article|name)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT article (title, author)>
<!ELEMENT title (#PCDATA)>
<!ATTLIST catalog publisher #FIXED “O’Reilly”>
<!ATTLIST catalog title CDATA #REQUIRED>
<!ATTLIST catalog photo ENTITY #REQUIRED>
<!ENTITY mt-catalog-1 “mt-catalog1.jpg”>
<!ATTLIST journal date CDATA #REQUIRED>
<!ATTLIST author gender (Male/Female) #REQUIRED>
<!ATTLIST article aid ID #REQUIRED>
<!ATTLIST author id IDREF #REQUIRED>
]>

Figure 2. Definition of Complex Classes in DTD

Moreover, DTD attributes normally contain
constraints. For instance, “REQUIRED” means that
the value must be appeared. On the contrary, value of
an attribute with “IMPLIED” means that it is not
demanded. And “NOTATION” means that attribute’s
value is a comment. Furthermore, in order to depict
the element’s appearing times, this procedure
borrows the OWL expressions, such as
owl:maxCardinality and owl:minCardinality. Table 1
shows the mapping of DTD constraints to
RDFS/OWL concepts.

 For nested elements, this procedure don’t use the
rdfs:subclassOf, which is available in RDF syntaxes.
The reason is because some nested elements in DTD
are not actually the sub-class of their parent element.
Therefore, rdfs:Container is defined to establish the
relationship between child node and parent node For

example, the relationship of parent element and child
element between three classes, “catalog”, “journal”,
and “article” in Fig.2 are described as RDFS/OWL
concepts shown in Fig.3.

<rdfs:Class rdf:ID= “catalog”>
 <rdfs:comment> catalog class </rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID= “journal” owl:minCardinality= “1”>
 <rdfs:comment> journal class </rdfs:comment>
 <rdfs:Container rdf:resource= “catalog”/>
</rdfs:Class>
<rdfs:Class rdf:ID= “article”>
 <rdfs:comment> article class </rdfs:comment>
 <rdfs:Container rdf:resource= “journal”/>
</rdfs:Class>

Figure 3. RDFS/OWL Declaration in Figure 2

Content constraints are relationship of subelements.
For instance, the relationship of B and (C|D) is “and”,
which means (B≠ null ˄(C|D)≠null), while the
relationship of C and D is ‘or”, which means ((
C=null ˄ D≠null) ˄ (C≠null ˄D=null)). In Fig.2,
article and name are subelements of journal and title
and author are subelements of article. For instance,
these are mapped to RDFS/OWL concepts in Fig.4.

rdfs:Class>
 <owl:intersectionOf rdf:parseType= “Collection”>
 <rdfs:Class rdf:ID= “article”/>
 <rdfs:Class rdf:ID= “name”/>
 </owl:intersectionOf>
 <rdfs:comment> Class Collection </rdfs:comment>
 <rdfs:Container rdf:resource= “journal”/>
</rdfs:Class>
<rdfs:Class>
 <owl:unionOf rdf:parseType= “Collection”>
 <rdfs:Class rdf:ID= “title”/>
 <rdfs:Class rdf:ID= “author”/>
 </owl:unionOf>
 <rdfs:comment> Class Collection </rdfs:comment>
 <rdfs:Container rdf:resource= “article”/>
 </rdfs:Class>

Figure 4. RDFS/OWL Declaration in Figure 2

Property (rdf:Property) : For the case an element in
DTD is described by <!ELEMENT> tag but its
element-content contains data type (#PCDATA or
#CDATA), this element will be considered as RDF
property, rdf:Property. The property’s domain is the
parent class of this property, and its range is the data
type of this property. On the other hand, #PCDATA
and #CDATA are used for declare character data in
XML, so this procedure maps them to “String” data
type in RDFS/OWL. For instance, in Fig 5, element
“name” has a data type, so it is mapped to
RDFS/OWL concepts in Fig.6.

Figure 5. Definition of Complex Classes in DTD

DTD RDFS/OWL
#REQUIRED owl:minCardinality (=1)

#IMPLIED owl:Cardinality (=0)

+ owl:minCardinality (=1)

? owl:minCardinality (=0)

* owl:minCardinality(=0)
owl:maxCardinality (=unbounded)

Table 1. The Mapping of DTD Constraints into
RDFS/OWL

<!ELEMENT name (#PCDATA)>

100

<rdf:Property rdf:ID= “name”>
 <rdfs:domain rdf:resource= “journal”/>
 <rdfs:range rdf:resource= “http://www.w3.org/1999/02/22-
rdf-syntax-ns#Literal”/>
</rdf:Property>

Figure 6. RDFS/OWL Declaration in Figure 5

ATTLIST provides extra information about elements
so its function is to describe the property of a class.
The attribute definition has the following syntax:
<! ATTLIST element-name attribute-name attribute-
type default-value>
 element-name is the name of element (class) and
attribute-name is a name of the attribute, in the
propose method, it is a name of the property.
attribute-type is a data type and default-value
specifies default value of the attribute. For instance,
one simple attribute in Fig.7 is mapped to
RDFS/OWL concepts in Fig.8.

<!ATTLIST journal date CDATA #REQUIRED>

Figure 7. Definition of Complex Class in DTD

<rdf:Property rdf:ID= “date”>
 <rdfs:domain rdf:resource= “#journal”/>
 <rdfs:range rdf:resource= “http://www.w3.org/1999/02/22-
rdf-syntax-ns#Literal”/>
</rdf:Property>

Figure 8: RDFS/OWL Declaration in Figure 6

 If attribute-type contains “FIXED” constraints,
default-value will be considered as the range of its
property. In Fig.9, attribute “publisher” has data type
“FIXED”, so it is mapped to RDFS/OWL concepts in
Fig.10.

<!ATTLIST catalog publisher #FIXED “O’Reilly”>

Figure 9. Definition of Complex Classes in DTD

<rdf:Property rdf:ID= “publisher”>
 <rdfs:domain rdf:resource= “#catalog”/>
 <rdfs:range rdf:resource= “#O’Reilly”/>
</rdf:Property>

Figure 10. RDFS/OWL Declaration in Figure 9

There is another notice that XML syntax allows,
elements with the same name in a document, but
RDFS/OWL does not. RDFS/OWL requires each
element has a unique identifier. Since there are two
elements that have the same name, title, the second
repeated name is renamed by adding “has” and its
parent name in front of its name as in Fig 11.
<rdf:Property rdf:ID= “has-article-title”>
 <rdfs:domain rdf:resource= “#article”>
 <rdfs: range rdf:resource=
‘http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal”/>
 Figure 11: RDFS/OWL Declaration in Figure 2

 Beside these, another constraint in DTD is
enumeration constraint. Its purpose is to declare a list
of possible value of its attribute and attributes in the
document must be assigned a value from this list.
Furthermore, in order to depict the attribute’s
enumerated type, this procedure borrows the OWL
expressions, such as owl:oneOf. For example, in
Fig.12, attribute “gender” has enumeration constraint,
so it is mapped to RDFS/OWL concepts in Fig.13.

<!ATTLIST author gender (Male/Female) #REQUIRED>
Figure 12. Definition of Complex Classes in DTD

<rdf:Property rdf:ID= “gender” owl:oneOf
 rdf:parseType= “Resource”>
 <rdfs:domain rdf:resource= “#author”/>
 <rdfs:range rdf:resource= “#Male”/>
 <rdfs:range rdf:resource= “Female”/>
</rdf:Property>
 Figure 13. RDFS/OWL Declaration in Figure 12

ENTITY is used to define a shortcut for a common
text in XML. Its syntax is as follows:
 <! ENTITY name definition>
 In this case, name is the name of ENTITY and
definition is its definition. Because of the function in
the DTD, this procedure handles name as a variable
and definition as its value. When this procedure
meets this variable in the document, its value will be
called. For example, one simple entity in Fig 2 is
mapped to RDFS/OWL concepts in Fig 14.

<rdf:Property rdf:ID= “photo”>
 <rdfs:domain rdf:resource= “#catalog”>
 <rdfs:range rdf:resource= “mt-catalog1.jpg”^
 http://www.w3.org/1999/02-22-rdf-syntax-ns#mt-catalog-1>
</rdf:Property>
Figure 14: RDFS/OWL Declaration in Figure 2
In DTD, there are two kinds of keys constraints such
as ID and IDREF. ID is key and IDREF is foreign
key. For instance, ID/IDREF in Fig.2 is mapped to
RDFS/OWL concepts in Fig.15.
<rdf:Property rdf:ID= “aid”>
 <rdfs:domain rdf:resource= “article”/>
 <rdfs:range rdf:resource=
“http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal”/>
</rdf:Property>
<rdf:Property rdf:ID= “id”>
 <rdfs:domain rdf:resource= “author”/>
 <rdfs:range rdf:resource=
“http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal”/>
</rdf:Property>

Figure 15. RDFS/OWL Declaration in Figure 2

For instance, in Figure 2, catalog.dtd, root class is
catalog that contains information of journal element.
Element journal contains three properties, title,

101

publisher and date and two classes; article and name.
A class article includes the title and author elements.
But a class name is defined by element, but does not
contain any other elements, so it has considered as
attribute. Since there are two elements that have the
same name, title, the second repeated name is
renamed by adding “has” and its parent name in front
of its name. The resulted RDFS ontology as
following:

< ?xml version= “1.0”?>
 <rdf:RDF xmlns:rdf=
“http://www.w3.org/1999/02/22-rdf-syntax-ns#”
 xmls:rdfs=
http://www.w3.org/2000/01/rdf-schema#>
<rdfs:Class rdf:ID= “catalog”>
 <rdfs:comment> catalog class </rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID= “journal” owl:minCardinality= “1”>
 <rdfs:comment> journal class </rdfs:comment>
 <rdfs:Container rdf:resource= “catalog”/>
</rdfs:Class>
<rdfs:Class rdf:ID= “article”>
 <rdfs:comment> article class </rdfs:comment>
 <rdfs:Container rdf:resource= “journal”/>
</rdfs:Class>
<rdfs:Property rdf;ID= “journal” owl:minCardinality= “1”>
 <rdfs:domain rdf:resource= “#catalog”/>
 <rdfs:range rdf:resource= http://www.w3.org/1999/02/22-rdf-
syntax-ns#Literal/>
</rdfs:Property>
rdfs:Class>
 <owl:intersectionOf rdf:parseType= “Collection”>
 <rdfs:Class rdf:ID= “article”/>
 <rdfs:Class rdf:ID= “name”/>
 </owl:intersectionOf>
<rdfs:comment> Class Collection </rdfs:comment>
 <rdfs:Container rdf:resource= “journal”/>
</rdfs:Class>
<rdf:Property rdf:ID= “name”>
 <rdfs:domain rdf:resource= “journal”/>
 <rdfs:range rdf:resource= “http://www.w3.org/1999/02/22-
rdf-syntax-ns#Literal”/>
</rdf:Property>
<rdfs:Class>
 <owl:unionOf rdf:parseType= “Collection”>
 <rdfs:Class rdf:ID= “title”/>
 <rdfs:Class rdf:ID= “author”/>
 </owl:unionOf>
 <rdfs:comment> Class Collection</rdfs:comment>
 <rdfs:Container rdf:resource= “article”/>
 </rdfs:Class>
<rdf:Property rdf:ID= “has-article-title”>
 <rdfs:domain rdf:resource= “#article”>
 <rdfs: range rdf:resource=
‘http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal”/>
<rdf:Property rdf:ID= “publisher”>
 <rdfs:domain rdf:resource= “#catalog”/>
 <rdfs:range rdf:resource= “#O’Reilly”/>
</rdf:Property>
<rdf:Property rdf:ID= “photo”>
 <rdfs:domain rdf:resource= “#catalog”>
 <rdfs:range rdf:resource= “mt-catalog1.jpg”^
 http://www.w3.org/1999/02-22-rdf-syntax-ns#mt-catalog-1>
</rdf:Property>

<rdf:Property rdf:ID= “date”>
 <rdfs:domain rdf:resource= “#journal”/>
 <rdfs:range rdf:resource= “http://www.w3.org/1999/02/22-
rdf-syntax-ns#Literal”/>
</rdf:Property>
<rdf:Property rdf:ID= “gender” owl:oneOf
 rdf:parseType= “Resource”>
 <rdfs:domain rdf:resource= “#author”/>
 <rdfs:range rdf:resource= “#Male”/>
 <rdfs:range rdf:resource= “Female”/>
</rdf:Property>
<rdf:Property rdf:ID= “aid”>
 <rdfs:domain rdf:resource= “article”/>
 <rdfs:range rdf:resource=
“http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal”/>
</rdf:Property>
“http://www.w3.org/1999/02/22-rdf-syntax-ns#Literal”/>
</rdf:Property>
</rdf:RDF>

 Clearly, in the above RDF Schema document, there
are three classes, catalog, journal, and article. Each
class is added a description by using rdfs:comment.
The nested class is described by using rdfs:Container.
The attribute title of the class article is changed to
has_article_title. Each property is supported by
rdfs:domain and rdfs:range which restrict the anterior
and posterior values of a property.

3. Discussion, Implementation and
Evaluation

 In this section, discuss the reason why this
system chooses the RDF for the destination
transforming. Of course, other ontology languages
than RDF can be used to describe the meaning of the
XML, too. However, this system targets on the RDF
Schema since it is currently the foundation ontology
language for the Semantic Web. Moreover, currently
there are some tools supporting for it are available,
such as Protégé, Altova and some other reasoning
tools.
 This system is notably different from other
related approaches. First, this system translates
between the schemas and updates the changing
element during mapping step. While mapping, this
system uses the existing RDF Schema vocabularies,
especially to express the relationship among nesting
classes. Since this approach is based on the DTD
definitions and exploits the RDF syntaxes, the
transformation process is done automatically without
any user intervention.
 The program transforms DTD document into
RDF Schema including *.rdfs. File .rdfs stores
descriptions of classes and the relationships between

102

properties and classes as well as the data-types of
these properties. The output results are generated
using Intel (R) Core (TM) i3 CPU (2.40GHz and
2GB) under Windows 7 running Sun Java v.1.6. Java
programming language is used to transform XML
DTD into RDFS ontology.
 To access the performance of the schema
transformation process, four datasets with HDF5.dtd,
mondial-3.0.dtd, SigmodRecord.dtd and yahoo.dtd
are used. Table 2 is the time performance evaluation
of the proposed system.

 In order to validate the RDF output result, this
paper uses the ICS-FORTH VRP Validation tool. The
RDF output results obtained by using this method
always pass this validation tool service. The
validation result of RDF Schema is shown in Fig. 16.

 Fig 16. Validated Result of the RDF Document
This means that RDF Schema output can be used
directly by other RDF editors or Semantic Web
applications.

4. Conclusion

 In this paper, the propose method has presented a
set of rules to generate RDFS/OWL from DTD. This
method is based on DTD to automatically generate
the RDFS/OWL, as well as, a set of mapping bridges.
This paper shows that it is possible to mine DTD
sources to extract enough knowledge to build
semantically reduces the effort to convert the Web
into a Semantic Web, empower the data integration
and can provide a useful input to more complex and
ambitious systems.

References

[1] S.Decker, S.Melnik, F.V.Harmelen, D.Fensel, M.Klein,
J.Broekstra, M.Erdmann, and I.Horrocks, “The Semantic
Web: The Roles of XML and RDF”,
2000, IEEE Internet Computing.
[2] Sergey Melnik, “ Bridging the gap between RDF
 and XML”, 1999, available at
http://www.db.stanford.edu/melnik/rdf/syntax.html.
[3] Michel Klein, “Interpreting XML via an RDF Schema”,
2002, Database and Expert Systems Applications.
[4] I.F. Cruz, H. Xiao and F. Hsu, “An Ontology- Based
Framework for XML Semantic Integration” In IDEAS’04:
Proceedings of the International Database Engineering and
Application Symposium, pp. 217-226, (2004).
[5] P.T.T. Thuy,Young-Koo Lee and Sungyong Lee,
“XSD2RDFS and XML2RDF Transforming: a Semantic
Approach”, 2nd International Conference on Emerging
Databases, 2010.
[6] Peter Patel-Schneider and Jerome Simeon, “The
Yin/Yang Web: XML syntax and RDF Semantics”, 11th

International WWW conference, Hawaii, 2002.
[7] Refsnes Data, “Introduction to DTD”, 1999-
2007, available at: http://www.w3schools.com/dtd/dtd-
into.asp.
[8] Dan Brickley, R.V Guha and Brian McBride, “RDF
Vocabulary description language 1.0:RDF Schema”, W3C,
Feb 2004, available at: http://www.w3.org/TR/2004/REC-
rdf-schema.
[9] Frank Manola, Eric Miller, “RDF Primer”, W3C
Recommendation, February 2004, available at:
http://www/w3.org/TR/REC-rdf-syntax.
[10] T.Bray, J.Paoli and C.M. Sperberg-McQueen,
“eXtensible Markup Language(XML) 1.0”, W3C
Recommendation, Feb 1998, available at:
http://www.w3.org/TR/REC-xml.
[11] P.T.T Thuy, Young-Koo Lee and Sungyoung Lee, “A
Semantic Approach for Transforming XML Data into RDF
Ontology”, Advanced Information Technologies in
Future Computing Environments, 2013.
[12] M. Ferdinand, C. Zirpins, and D. Trastour, “Lifting
XML Schema to OWL”, In Web Engineering- 4th

Schema

name

(XML file)

Size in

(XML

file)

Size

out

(RDF

data)

Execution

Time for

processing

HDF5 9.34KB 18KB 0.325s

yahoo 1.44KB 3.5KB 0.115s

SigmodReco

rd

4.00KB 8.2KB 0.257s

Mondial-3.0 4.20KB 8.56K

B

0.269s

 Table 2. Time Performance Evaluation

103

International Conference, ICWE 2004, Munich, Germany,
2004, pp.354- 358.
[13] P.T.T. Thuy, Young-Koo Lee, Sungyoung Lee
and Byeong-Soo Jeong, “Transforming Valid XML
Documents into RDF via RDF Schema”, International
Conference on Next Generation Web Services Practices,
IEEE, October 2007.

