
1 
 

 
A Framework for Querying Relational Database using Keyword Search 

 
နေမာဓႆ 

Phyo Thu Thu Khine, Khin Nwe Ni Tun 
University of Computer Studies, Yangon 

phyothuthukhine@gmail.com, knntun@gmail.com 
  
Abstract 
 
 Digital library (DL) research and development 
has concentrated primarily on collections and on the 
services to build and access them. And when the 
large quantity of Myanmar document is getting 
archived by the digital libraries, there is a need 
Myanmar Keyword Search system to easily search 
and retrieve these documents. Keyword search has 
been the most widely used kind of querying 
nowadays, especially for searching documents on the 
web because of its user-friendly way. Although, there 
are so many Keyword Search Systems over 
Relational Databases that exist on Internet, none of 
these can’t fully support for searching with Myanmar 
language.  Therefore we propose a system that can 
search and retrieve the document from the digital 
library by using Myanmar language keyword. At 
first, we translate keyword query into the available 
language in the digital library, and then execute 
them in RDBMS by using Hybrid Algorithm to 
retrieve top-k results. 

 
1. Introduction 
 

Without knowing the database schema or writing 
SQL queries, casual users or Web users can use 
Keyword Search over Relational Databases 
(KSORD) techniques to access databases in a fashion 
similar to using search engines to search the Web. In 
fact, the amount of information stored in Deep Web 
is 400 or 500 times larger than that in the visible 
Web. If database systems support keyword search, 
publishing or searching a database is expected to be 
simpler and easier in the web, and the deep web 
problem can be alleviated. However, keyword search 
techniques on the Web cannot directly be applied to 
databases because data on the Internet and database 
are in different forms. In databases, the information is 
viewed as data tables and their relationships, and 
query results may be a single tuple or joining tuples. 
Accordingly, the challenge is how to apply keyword-
based search to find sorted relevant results in 
databases [3]. 

KSORD systems may be classified into two types 
according to their query processing mechanism. One 
is offline systems, which retrieve results for a  

keyword query from an intermediate representation 
generated by ”crawling” the database in advance, 
such as EKSO[20] or from some indexes created 
beforehand, such as ObjectRank [8] and ITREKS 
[19]. The other is online systems, which convert a 
keyword query into many SQL queries and retrieve 
the database itself.  Furthermore, online KSORD 
systems can be classified into two types [1] according 
to their data model, schema-graph-based and data-
graph-based. Data-graph-based Online KSORD (DO-
KSORD) systems includes BANKS [4], BANKS II 
[5], NUITS[6,7],  ObjectRank [8] and etc., while 
Schema-graph-based Online KSORD (S0-KSORD) 
systems include DBXplorer [9], DISCOVER [10], 
IR-Style [11] and SEEKER [12], SPARK [13], and 
etc. 

The offline KSORD Systems execute queries 
relatively efficiently, but they can’t query the up-to-
date data in time, and also need a long preprocessing 
time to generate the intermediate representation and 
large physical space to store it. On the contrary, 
online KSORD systems can retrieve the latest data 
from the database, but the execution is usually 
inefficient because the converted SQL queries often 
contain many join operators as for SO-KSORD 
systems and the data graph search algorithms cannot 
scale to the number of query keywords and the size of 
data graph as for DO-KSORD systems.  

As we all know, a wide number of languages are 
spoken by human beings in the world and most of the 
people prefer to have information in their own 
language. A person who is not particularly familiar 
with English should able to search with his native 
language. However, there are so many Keyword 
search over Relational Databases systems that exist 
on Internet, none of these can’t fully support for 
searching with Myanmar language.  For these 
reasons, our proposed system intends to assist 
searching and retrieving the document from the 
digital library by using Myanmar language keyword. 
 The rest of this paper is structured as follows: 
Section 2 briefly introduces related works. Section 3 
introduces several basic definitions. Section 4 
presents the framework for processing keyword-
based queries and describes the architecture of the 
system. Section 5 concludes the paper. 

2. Related Work  



2 
 

 
 Querying using keywords is the most common 
method that is used today. Querying of a database 
relies on query languages that are inappropriate for 
end-users who have little experience with databases. 
There are many models of keyword-based querying 
in relational databases.  The earlier survey [1] 
overviewed systems such as BANKS [4], DBXplorer 
[9], DISCOVER [10], and ObjectRank [8], and 
briefly summarized the key techniques from several 
aspects.  They support free-form keyword search on 
relational databases and return tuple trees as answers 
for a given keyword query. One focus of the above 
works is to generate tuple trees efficiently. BANKS 
[4] finds all tuple trees from the data graph directly 
using a Steiner tree algorithm. In the data graph, they 
use PageRank style methods to assign weights to 
tuples and assign weights to edges between tuples.  
 DBXplorer [9] and DISCOVER [10] exploit the 
RDBMS schema, which leads to relatively efficient 
algorithms for answering keyword queries because 
the structural constraints expressed in the schema are 
helpful for query processing.  However, all of them 
just assume AND semantics for an answer whereas 
our approach supports metadata queries with both 
AND and OR semantics. Hristidis et al. proposed the 
extension of DISCOVER that handles non metadata 
queries with both AND and OR semantics. Kacholia 
et al. [5] presented the bidirectional strategy to 
improve backward expanding search in BANKS by 
allowing forward search strategy. However, it still 
works by identifying Steiner trees from a whole 
graph. More recent approaches have been attentively 
proposed ranking methods. ObjectRank [8] uses an 
authority-based ranking strategy to keyword search in 
relational databases. It returns a set of the individual 
tuple as an answer. The ranking function is based on 
link analysis and term frequencies of query keywords. 
 Recent work focuses on brining more effective 
ranking from IR literatures and its related query 
processing methods. Specifically, [13] improves the 
ranking method in [11] by the following 
normalizations: tuple tree size normalization, refined 
document length normalization, document frequency 
normalization, and inter document weight 
normalization. Offline systems (such as EKSO [14]) 
usually preprocess the data to generate an 
intermediate representation for the database. 
 Keyword search over XML databases has also 
attracted interest recently [16, 17, 18]. Florescu et al. 
[16] extend XML query languages to enable keyword 
search at the granularity of XML elements, which 
helps novice users formulate queries. This work does 
not consider keyword proximity. Hristidis et al. [18] 
view an XML database as a graph of “minimal” XML 
segments and find connections between them that 
contain all the query keywords. They focus on the 
presentation of the results and use view 
materialization techniques to provide fast response 

times. Finally, XRANK [17] proposes a ranking 
function for the XML “result trees”, which combines 
the scores of the individual nodes of the result tree. 
The tree nodes are assigned PageRank-style scores 
off-line. 
 

3. Framework of Keyword-Based Query 
 
 In this section, the detail processing of the 
proposed system is described with an example. 
 
3.1. Query Model 
 
      Consider a database with n relations R1, . .,Rn. 
Each relation Ri has mi attributes ai1,…,aimi , a 
primary key and possibly foreign keys into other 
relations. The schema graph Gs(V,E), is a directed 
graph that captures the primary key to foreign key 
relationships in the database schema. Gs has a node in 
V for each relation Ri of the database and an edge    
Ri → Rj in E for each primary key in Ri to foreign 
key in Rj relationships.  Figure 1 shows the schema 
graph of DBLP used in this paper. 

 

 
 

Figure 1: DBLP Schema Graph 
 

 
 

Figure 2: DBLP Database Example 
 
3.2. System Architecture 
 

When a user keyword query comes (Figure 3), the 
keyword query is transliterated into the available 
language in the digital library. Then Tuple Set 
Creator creates tuple sets for each relation which has 
text attributes with full-text index, and only those 
non-empty tuple sets are left. Then, Candidate 
Network Generator outputs a complete and non-
redundant set of Candidate Networks whose sizes are 



3 
 

not greater than MaxCNsize through a breadth-first 
traversal of Gts. Finally, CN executor runs a top-k 
algorithm to execute CNs to get top-k results for this 
query. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Architecture of proposed system 
 
3.2.1. Query Processing 
 

In this section, the components of query 
processing scheme (See Figure 2) and the structure of 
their inputs and outputs are described as follows. 
   
Tuple Sets Creator 
  
The Tuple Set Creator inputs a set of keywords 
k1,…,km and outputs tuple sets for all subsets of 
keywords.  A set of Tuple Sets (TSs) is the result sets 
created for a user keyword query by making use of 
the full-text search functionality of RDBMS. At most 
one Tuple Set can be created for a relation with text 
attributes and full-text indexes.  Only those non-
empty result sets are left, called as non-free tuple sets 
(nfTS). 
 
Candidate Network Generator 
 

The Candidate Network Generator inputs the set 

of keywords k1,…,km, the non-empty tuple sets  
and the maximum candidate networks’ size T and 
outputs a complete and non-redundant set of 
candidate networks. A breadth-first CN enumeration 

algorithm that is both sound and complete. The key 
challenge is to avoid the generation of redundant 
joining networks of tuple sets. In order to generate all 
candidate networks for an l-keyword query Q over an 
RDB with schema graph GS, algorithms are designed 
to generate candidate networks C = {C1, C2…} that 
satisfy the following two conditions: 
• Complete: For each solution T of the keyword 

query, there exists a candidate network  
that can produce T. 

• Duplication-Free: For every two CNs  
and, Ci and Cj are not isomorphic to each other.  

      It can enumerate all the CNs of size no more than 
a specified number without violating any pruning 
rules. There are three pruning rules for partial CNs. 
 
• Rule-1: Duplicated CNs are pruned (based on tree 

isomorphism). 
• Rule-2: A CN can be pruned if it contains all the 

keywords and there is a leaf node, Rj{K′}, where 

K′ = ∅ , because it will generate results that do 

not satisfy the condition of minimality. 
• Rule-3: When there only exists a single foreign 

key reference between two relation schemas (for 
xample, Ri → Rj), CNs including Ri{K1} → 
Rj{K2} ←Ri{K3} will be pruned, where K1, K2, 
and K3 are three subsets of Q, and Ri{ K1},        
Rj{ K2}, and Ri{ K3} are keyword relations. 
 

Example 1: Suppose a user wants to search papers 
written by "Ralf Steinmetz" with "p2p" in their titles 
from the DBLP3 database (its schema is shown in 
Figure 1). He might give a query containing two 
keywords: "p2p Steinmetz". Table1shows the 
generated candidate networks for query "p2p 
Steinmetz" in Example 1. 
  
Table1. Enumerating CNs for query "p2p Steinmetz" 
 

 
Candidate Network Executor 
 

Candidate Network Executor uses each Candidate 
Network (CN) and its corresponding tuple IDs in 
returned tuple sets and then translates CNs into 
parameterized prepared SQL queries to execute them 
in RDBMS to retrieve ranked results. 

 

Transliteration 
Process 

Candidate Network 
Generator 

Candidate Network 
Executor 

Database 

Tuple Set Creator Full-text 
Index 

Database 
Schema 

Myanmar  
Keyword 

Tuple 
Sets 

Candidate 
Networks 

Keyword 

Parameterized 
Prepared SQL Queries 

Top-k 
Result



4 
 

5. Conclusion 
 
 As the amount of information stored in databases 
is growing, all humanity such as students, scientists, 
researchers, reporters may want to find Myanmar 
documents relevant to their need. Thus keyword 
search systems over relational databases have 
become more and more important. In this paper, we 
have presented a framework for querying relational 
database based on keyword search.  Keyword-based 
search system can allow search for combination of 
interesting terms without a-prior knowledge of the 
data schema and query language.  By using the 
proposed processing scheme, the system will retrieve 
more relevant results that match the user needs. The 
proposed system in this paper will be applied 
efficiently and effectively in Myanmar language 
Keyword-based searching.  
  

References 
 
[1] S. Wang and K. Zhang, "Searching Databases with 
Keywords", Journal of Computer Science and Technology, 
20(1). 2005:55-62. 
 
[2] M.K.Bergman. "The deep web: Surfacing hidden 
value". White Paper, Bright Plannet, 2000. 
 
[3] J. Saelee, and V. Boonjing, "A Metadata Search 
Approach to Keyword Search in Relational Databases", 
ICCIT, pages 571-576, 2008. 
 
[4] Bhalotia, G., Hulgery, A., Nakhe, C., Chakrabarti, S., 
Sudarshan, S.: "Keyword Searching and Browsing in 
Databases using BANKS". In: Agrawal, R., et al. (eds.) 
Proc. of the 18th Int’l. Conf. on Data Engineering, pp. 
431–440. IEEE Press, Los Alamitos (2002) 
 
[5] Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., 
Desai, R., Karambelkar, H.: "Bidirectional Expansion for 
Keyword Search on Graph Databases". In: Böhm, K., et al. 
(eds.) Proc. of the 31st Int’l. Conf. on Very Large Data 
Bases, pp. 505–516. ACM, New York (2005).  
 
[6] Wang, S., Peng, Z.H., Zhang, J., Qin, L., Wang, S., Yu, 
J., Ding, B.L.: "NUITS: A Novel User Interface for 
Efficient Keyword Search over Databases". In: Dayal, U., 
et al. (eds.) Proc. of the 32nd Int’l. Conf. on Very Large 
Data Bases, pp. 1143–1146. ACM, New York (2006). 
 
[7] Ding, B.L., Yu, J., Wang, S., Qin, L., Zhang, X., Lin, 
X.M.: Finding Top-k Min-Cost Connected Trees in 
Databases. In: Proc. of the 23rd Int’l. Conf. on Data  
Engineering, pp. 836–845. IEEE Press, Los Alamitos 
(2007). 
 
[8] Balmin, A., Hristidis, V., Papakonstantinou, Y.: 
"ObjectRank: Authority-Based Keyword Search in 
Databases". In: Nascimento, M.A., et al. (eds.) Proc. of the 
30th Int’l. Conf. on Very Large Data Bases, pp. 564–575. 
Morgan Kaufmann Publishers, San Francisco (2004) 
 

[9] Agrawal, S., Chaudhuri, S., Das, G.: "DBXplorer: A 
system for keyword-based search over relational 
databases". In: Agrawal, R., et al. (eds.) Proc. of the 18th 
Int’l. Conf. on Data Engineering, pp. 5–16. IEEE Press, 
Los Alamitos (2002). 
 
[10] V. Hristidis, Y. Papakonstantinou: "DISCOVER: 
Keyword Search in Relational Databases". VLDB, 
2002:670-681. 
 
[11] V. Hristidis, L. Gravano, Y. Papakonstantinou, 
"Efficient IR-Style Keyword Search over Relational 
Databases", VLDB, 2003:850-861. 
 
[12] Wen, J.J., Wang, S.: "SEEKER: Keyword-based 
Information Retrieval over Relational Databases". Journal 
of Software 16(7), 1270–1281 (2005). 
 
[13] Luo, Y., Lin, X.M., Wang, W., Zhou, X.F.: "SPARK: 
Top-k Keyword Query in Relational Databases". In: Chan, 
C.Y., et al. (eds.) Proc. of the ACM SIGMOD International 
Conference on Management of Data, pp. 115–126. ACM, 
New York (2007). 
 
[14] S. Qi, W. Jennifer, "Indexing Relational Database  
Content Offline for Efficient Keyword-Based Search", 
Proceeding of IDEAS, 2005:297-306. 
 
[15] G. Salton and M. McGill. "Introduction to Modern 
Information Retrieval". McGraw-Hill, 1983 
 
[16] D. Florescu, D. Kossmann, and I. Manolescu. 
"Integrating keyword search into XML query processing". 
In WWW9, 2000. 
 
[17]L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. 
"XRANK: Ranked keyword search over XML documents". 
In ACM SIGMOD,2003. 
 
 [18] V. Hristidis, Y. Papakonstantinou, and A. Balmin. 
"Keyword proximity search on XML graphs". In ICDE, 
2003. 
 
[19] J. Zhan, S. Wang. "ITREKS: Keyword Search over 
Relational Database by Indexing Tuple Relationship". 12th 
International Conference on Database Systems For 
Advance Applications (DASFAA), 2007. 
 
[20] S. Qi, W. Jennifer. "Indexing Relational Database 
Content Offline for Efficient Keyword-Based Search". 
IDEAS, 2005:297-306. 
 


