
Evaluating the Impact of Refactoring of Class Hierarchies

for Software Maintenance

Hnin Pwint Phyu

University of Computer Studies,
Yangon

ahpwint@gmail.com

Thi Thi Soe Nyunt

University of Computer Studies,
Yangon

thithisn@gmail.com

Abstract

 The class hierarchy is an important step of an
objected-oriented software development.
Designing and maintaining the class hierarchy
for reverse engineering is a difficult task.
However, Formal Concept Analysis (FCA) is a
strong tool which provides a natural theoretical
framework for class hierarchy design and
maintenance because it can guarantee maximal
factorization while preserving specializing
relationships. Relational Concept Analysis
(RCA), an extension of FCA, is an efficient
approach to allow dealing with entities described
by binary attributes and by relations with the
other entities. Moreover, object-oriented design
metrics are essential part of software
environment. So, our proposed system consists of
two main tasks. First, we propose an approach
for refactoring class hierarchy in object-oriented
design with the theoretical strength of FCA and
RCA. Next, we focus on a set of object-oriented
design metrics that can be used to evaluate the
impact of the resulted object-oriented design.
Keywords— FCA, RCA, Class Hierarchy,
Refactoring, Object-oriented Metrics

1. Introduction

 When an object oriented software or model
becomes bigger and bigger, duplicated elements
start to appear, decreasing the readability and the
maintainability of the software. Designing and
maintaining class hierarchy is a crucial task in
reverse engineering. A well designed class

hierarchy makes the software easier to
understand, maintain and reuse. In designing a
class hierarchy, classes, properties/attributes,
associations and methods are added and modified
as the software evolves [8]. So, we propose
Formal Concept Analysis (FCA) for factoring
class hierarchies. FCA provides a formal
framework for identifying groups of elements
sharing sets of properties. It forms the clusters of
objects having common attributes [15]. After
applying FCA and forming a lattice of given
class specifications, one can easily analyze the
structure and can comment on various aspects
such as code duplication, design patterns,
relevant domain concepts, opportunities for
refactoring and quality of source code etc.
Although Formal Concept Analysis is powerful
to distribute attributes in a class hierarchy, but is
unable to deal with relational descriptions. Thus,
we propose to apply Relational Concept Analysis
to extend FCA.
 Relational Concept Analysis, an extension of
FCA, is designed to take into account entities
described by binary attributes with relations
linking them [8]. The contribution proposed in
this paper is an approach using Formal Concept
Analysis and Relational Concept Analysis to
refactor class hierarchy design in reverse
engineering, and evaluating the impact of class
hierarchy with object oriented design metrics.

Design metrics play a vital role in helping
developers to appreciate design aspects of
software i.e. improve software quality and
developer productivity [21]. The metrics for
object oriented design focus on measurements
that are applied to the class and design

characteristics for making changes that will
reduce complexity and improve the continuing
capability of the design. Nowadays, a quality
engineer can choose from a large number of
object–oriented metrics. Among them, we
emphasize on object oriented metrics used
include inheritance related measures, cohesion
measures and coupling measures such as DIT,
NOC, ANDC, ANIC, LCOM and CBO, etc to
evaluate the impact of the class hierarchy design.
 This paper is organized as follows. We
present some related works in section 2. Then in
section 3 and 4, we discuss the background
theory and detail the framework we adopt for
refactoring class hierarchy using FCA and RCA
and present some object-oriented design metrics
for evaluating the impact of class hierarchy
design. We describe conclusion in section 5.

2. Related Work

 FCA has been used in many research areas.
Boussaidi [5] present an approach to detect
design defects in source code using two
techniques: Formal Concept Analysis (FCA) and
metrics and detect antipatterns through the
detection of the well known design defect Blob.
In this work, they measure the size of the classes
in terms of number of declared attributes (NAD)
and methods (NMD) and use the LCOM5 metric
to compute the cohesion of each class. Moha,
Rezgui, and Gueheneuc proposed a novel
approach for defect removal in object-oriented
programs that combines the effectiveness of
metrics with the theoretical strength of FCA.
They used a model of the source code which is
simpler to manipulate than the raw source code
and therefore eases the subsequent activities of
detection and correction. However, they did not
describe how to measure with the metrics [13].

In [12], they applied an automated approach
for suggesting defect-correcting refactoring using
Relational Concept Analysis (RCA). The added
value of RCA consists in exploiting the links
between formal objects which abound in a
software re-engineering context. They also
validated this approach on instances of the Blob
design defect taken from four different open-

source programs. A large body of some work
focused on problems related to hierarchy
construction and reconstruction. Depending on
the design goals and available specifications,
several alternative hierarchy types are considered
within this framework. A set of normal forms for
class hierarchy design is described, all of them
based on the FCA framework [15], [10].

The paper proposes an approach based on
Formal Concept Analysis and one of its variants,
Relational Concept Analysis, to refactor a use
case diagram as a whole in order to make it
clearer by introducing generalized actors and use
cases to factorize relations [6]. In this paper [8],
Falleri, Huchard and Nebut present a generic
approach and tool using Model-Driven
Engineering and Relational Concept Analysis to
perform class model normalization. By
translating the source data from different
languages (UML, EMOF, Java,..) into the input
FCA data format before applying FCA or RCA.
Our proposed work seems similar with this work.
However, our work evaluates the impact of the
class hierarchy design with OOD metrics for
considering maintainability.

This paper considers the inheritance metrics of
F.T. Sheldon et al (2002) and Henderson Seller's
(1996) for comparison with proposed inheritance
metric suites [18]. We emphasize on this
proposed inheritance metrics in our work.

3. Background Theory

3.1. Formal Concept Analysis

 Formal Concept Analysis (FCA) is a strong
tool which provides a framework for class
hierarchy design and maintenance. FCA provides
a formal framework for identifying groups of
elements sharing sets of properties. An FCA
engine requires contexts as inputs and generates
a set of concepts. A concept is a group of
elements and their shared properties.
Relationships among concepts lead to a concept
lattice.
Formal Context (K): Formal context is a simple
mathematical structure used to define the fact
that ’Object has an attribute’. A formal context K
is a triple (G, M, I) where,

• G is a set of objects
• M is a set of attributes
• I is a (incidence) binary relation

between G and M
 Here, we consider classes as set of objects.

Properties of objects are attributes, methods, and
associations. Cross or value in particular cell
shows that object and attribute are related.
Formal Concept (X, Y): Formal concept (X, Y)
is an abstract idea which gives a view about
objects, attributes and interaction between them.
In formal context, there is set of objects
consisting which are closely connected to the set
of attributes. This pair forms a formal concept. X
is called extent and Y is called intent of a
concept (X, Y). This ordered set of concepts is
called a concept lattice of context (G, M, I).
Class hierarchy can be represented using well
defined structure - Concept Lattice. There are
three ways to form concept lattice of class
hierarchy are attribute factored lattice form,
method factored lattice form and associations
factored lattice form.

3.2. Relational Concept Analysis

Relational Concept Analysis is an extension
of FCA. It is designed to take into account
entities described by binary attributes with
relations linking them. In RCA, instead of having
just one formal context, there is a set of formal
contexts or a set of tables (a relational context
family or RCF) such that some tables represent
object-attribute relations and some tables capture
object-object relations. Then these formal
contexts are filled out with other contexts that
show relations between entities coming from one
context and entities coming from another
context. More formally, a Relational Context
Family (RCF) is a pair F = (K, L) where K is a
set of formal contexts and L a set of relational
contexts.

3.2. Object Oriented Design Metrics

In fact, object-oriented development requires
not only a different approach to design and

implementation, but also a different approach to
software metrics. Object oriented design include
attributes, methods, objects (classes),
relationships and class hierarchies. Object
oriented design metrics is an essential part of
software environment. A set of object oriented
metrics that can be used to measure the quality of
an object-oriented design. They look at the
quality of the way the system is being built.
Design metrics can be divided into
• Traditional Metrics
• Object oriented Design Metrics.

3.3. Metrics for Class Diagrams

 The metrics for object oriented design focus
on measurements that are applied to the class and
design characteristics. For example, metrics
proposed by Chidamber & Kemerer metrics (CK
metrics, 1994), MOOD metrics, Lorenz and Kidd
metrics etcs. CK metrics are the most popular
among them. Another comprehensive set of
metrics is MOOD metrics. Chidamber and
Kemerer proposed six metrics are Weighted
Method per Class (WMC), Depth of Inheritance
Tree (DIT), Number of Children (NOC),
Coupling Between Objects (CBO), Response for
a Class (RFC) and Lack of Cohesion in Methods
(LCOM).
 The MOOD (Metrics for Object Oriented
Design) metrics set refers to a basic structural
mechanism of the OO paradigm as
encapsulation, inheritance, polymorphisms,
message-passing and are expressed as quotients.
The set includes the following metrics are
Method Hiding Factor (MHF), Attribute Hiding
Factor (AHF), Method Inheritance Factor (MIF),
Attribute Inheritance Factor (AIF),
Polymorphism Factor (PF) and Coupling Factor
(CF).
 Inheritance Metrics of F. T. Sheldon and
Henderson Seller are Average Degree of
Understandability Metric (AU), Average Degree
of Modifiability Metric (AM), and Average
Inheritance Depth (AID). Another inheritance
Metrics of K. Rajnish, A.K. Choudhar, and A.
M. Agrawal are Derive Base Ratio Metric
(DBRM), Average Number of Direct Child

(ANDC) Metric, Average Number of Indirect
Child (ANIC) Metric.

4 .Framework of the Proposed System

4.1. Applying FCA and RCA in Our
Proposed System

 The approach takes as input source code,
encodes it into FCA (or RCA) contexts,
generates the corresponding concept lattices, and
finally produces as output the refactored class
diagram. In our proposed system, we imagine
that there are three steps of processes.

 In first step, we extract specifications of
classes from the source code by using FCA
parser to get the formal context. Each class is
converted into an object and the properties of the
class are converted into attributes in the formal
context, and the binary relation of the formal
context is built according to attribute possession.
Then, we feed formal context as input in the
FCA engine. The FCA engine builds a concept
lattice, according to the formal context. This
concept lattice will contain concepts that
represent the existing entities of the formal
context, and new concepts that will lead to the
creation of new classes. Then, FCA builds a class
diagram according to the concept lattice and
produces the factored class hierarchy as output.

In second step, the input of RCA is a set of
tables (a relational context family or RCF). We
construct Relational Context Family from the
output of the first step. Then these formal
contexts are filled out with other contexts that
show relations between objects coming from one
context and objects coming from another
context. An iterative lattice construction is
applied on the relational context family. The set
of lattices produced after each step of the process
is called a Concept Lattice Family (CLF). After
building class diagram, RCA produces the
refactored class hierarchy as output. Finally, we
assess the impact of the output class hierarchy
design with object-oriented design metrics
especially with inheritance, cohesion, coupling
metrics.

Figure.1. Process flow of the proposed system

4.4. Assessment with the object-oriented
design metrics

 The selected object-oriented design metrics
are intended to be applied to the concepts of
classes (cohesion), coupling, and inheritance for
assessment of the impact of the resulted class
hierarchy design.

4.4.1. Inheritance Metric: Inheritance is a type
of relationship among classes that enables
programmers to reuse previously defined objects
including variables and operators.
Depth of Inheritance Tree (DIT): The DIT will
be the maximum length from the node to the root
of the tree. DIT is a measure of how many
ancestor classes can potentially affect this class.
Number of Children (NOC): The number of
children is the number of immediate subclasses
subordinate to a class in the hierarchy.

Impact of class
hierarchical

design

Class hierarchy

Refactored class hierarchy

Cohesiveness
ss’s

Low coupling

FCA

RCA

Formal context

Assessment with
OOD metrics

code

Method Inheritance Factor (MIF): MIF is
defined as the ratio of the sum of the inherited
methods in all classes of the system under
consideration to the total number of available
methods for all classes.

 MIF =

∑

∑

=

=
TC

i
aa

TC

i
ii

CM

CM

1

1

)(

)(
 --------- (1)

Attribute Inheritance Factor (AIF): AIF is
defined as the ratio of the sum of inherited
attributes in all classes of the system under
consideration to the total number of available
attributes for all classes.

 AIF =

∑

∑

=

=
TC

i
aa

TC

i
ii

CA

CA

1

1

)(

)(
 -------- (2)

Average Degree of Understandability Metric
(AU): The ease of understanding a program
structure or a class inheritance structure.

 AU = ∑
=

+
t

i
i tCPRED

1

/)1)((------- (3)

Average Degree of Modifiability Metric (AM):
The ease with which a change or changes can be
made to a program structure or a class
inheritance structure.

AM = AU + ∑
=

t

i
i tCSUCC

1

/)2/)((------ (4)

Average Inheritance Depth (AID):

AID = ∑ (depth of each class / number of classes) --- (5)

Derive Base Ratio Metric (DBRM): DBRM is
the ratio of the total derived classes to the total
base classes in the class inheritance tree. DBRM
measures how many derived classes which
directly or indirectly affect the ancestor classes.

 DBMR = ∑∑
==

N

i
i

N

i
i CTBCTD

00

)()(---- (6)

Average Number of Direct Child (ANDC)
Metric: ANDC metric is the ratio of the total
number of immediate child to the total number of
classes in the inheritance tree. NDC metric
measures how many immediate subclasses are
going to inherit the properties of classes.

 ANDC = (NCTDC
N

i
i∑

=0

))(------- (7)

Average Number of Indirect Child (ANIC)
Metric: ANIC metric is the ratio of the total
number of indirect child to the total number of
classes in the inheritance tree. This metric gives
how many ancestors' classes potentially affect
the subclasses.

 ANIC = (NCTIC
N

i
i∑

=0

))(------- (8)

4.4.2. Cohesion Metric:
Lack of Cohesion in Methods (LCOM) is the
number of pairs of methods in the class using no
attributes in common, minus the number of pairs
of methods that do. Low cohesion increases
complexity, thereby increasing the likelihood of
errors during the development process.

4.4.3. Coupling Metric:
Coupling between objects (CBO) CBO is a count
of the number of other classes to which a class is
coupled. The larger the number of couples, the
higher the sensitivity to changes in other parts of
the design and therefore maintenance is more
difficult.

5. Conclusion

 Nowadays, FCA has been used in wide range
of areas. In software engineering, many tasks
become very simple and less manual by the use
of FCA. In this paper, an attempt is to present the
refactoring of class hierarchy design by using
FCA and RCA in reverse engineering and to

apply different inheritance metrics for impact
assessment of the class hierarchy. This study also
focuses on object oriented design metrics
(cohesion and coupling) that can be worn to
measure the quality of an object oriented design.
In this work, the goal is to find the efficient class
hierarchy design for maintainability of code in
reverse engineering. We will analyze several java
Open Source Projects. Nevertheless, in the one
hand, the FCA and RCA technique is built upon
the metrics one results for choosing the classes to
analyze. In the other hand, the FCA and RCA
techniques give some information like the
cohesive and low coupling subsets of a large
class that the metrics technique do not. Using the
results obtained with the FCA and RCA
techniques, we are able to resolve design
problems and able to assess the impact with
object-oriented design metrics.

References

[1] G. Arévalo, “High-Level Views in Object-

Oriented Systems Using Formal Concept
Analysis”, 2004.

[2] G. Arévalo, S.Ducasse, O. Nierstrasz,
“Discovering Unanticipated Dependency
Schemas in Class Hierarchies”, 2010.

[3] S. Azhar, S. Samia, A. Anam, A. Moein,
“Detection of Problems in Class Hierarchies
and Their Correction through Formal
Concept”, in ICSM, 2010.

[4] G. E. Boussaidi, D. Huynh, N. Moha,
“Detection of Design Defects:Formal
Concept Analysis and Metrics”, 2005.

[5] J. Bansiya, C. G. Davis, “A Hierarchical
Model for Object-Oriented Design quality
Assessment”, IEEE, 2002.

[6] X. Dolques, M. Huchard, C. Nebut, and P.
Reitz, “Fixing generalization defects in uml
use case diagrams”, 2010.

[7] J. Falleri, G. Arévalo, M. Huchard, and C.
Nebut, “Use of Model Driven Engineering in
Building Generic FCA/RCA Tools.”

[8] J. Falleri, M. Huchard, C. Nebut, “A generic
approach for class model normalization.”

[9] M. Genero, M. Piattini and C. Calero,
“Early measures for UML class diagrams”,
L' Objet. Volume 6, No. 4, 2000.

[10] R. Godin, P. Valtchev, “Formal concept
analysis-based class hierarchy design in
object-oriented software development.”

[11] M. L. Lee, “Change Impact Analysis of
Object-oriented Software”, 1998.

[12] N. Moha, A. Napoli, M. Rouane-Hacene, P.
Valtchev, and Y. E. Gueheneuc,
“Refactorings of Design Defects using
Relational Concept Analysis.”

[13] N. Moha, J. Rezgui, Y. Gueheneuc, P.
Valtchev, and G. E. Boussaidi, “Using FCA
to Suggest Refactorings to Correct Design
Defects.”

[14] C. Neelamegam, Dr. M. Punithavalli, “A
Survey - Object Oriented Quality Metrics”,
in Global Journal of Computer Science and
Technology, p 183.

[15] P. S. Patil, “Applying Formal Concept
Analysis to Object Oriented Design and
Refactoring.”

[16] L. H. Rosenberg, L. E. Hyatt, “Software
Quality Metrics for Object-Oriented
Environments.”

[17] K. Rajnish, V. Bhattacherjee “Class
Inheritance Metrics- An Analytical and
Empirical Approach”, 2007.

[18] K. Rajnish, A. K. Choudhary and A. M.
Agrawal, “Inheritence Metrics for Object-
oriented Design”, in International Journal of
Computer Science & Information
Technology (IJCSIT), Vol 2, No 6, 2010.

[19] M. Rouane-Hacene, M. Huchard, A.
Napoli, and P. Valtchev, “Using Formal
Concept Analysis for discovering knowledge
patterns”, in CLA’10, 2010.

[20] A. Shaik, C. R. K. Reddy, B. Manda,
Prakashini. C, Deepthi. K, “An Empirical
Validation of Object Oriented Design
Metrics in Object Oriented Systems”, in
Journal of Emerging Trends in Engineering
and Applied Sciences (JETEAS) 1 (2), 2010.

[21] H. A. Sahraoui, R. Godin, T. Miceli, “Can
Metrics Help Bridging the Gap between the
Improvement of OO Design Quality and Its
Automation.”

[22] G. Snelting, “Concept Lattices in Software
Analysis.”

[23] M. Streckenbach, G. Snelting,” Refactoring
Class Hierarchies with KABA.”

