
Improving Confidentiality and Integrity of Syntactic Steganography by
using Error Control Techniques

Ei Nyein Chan Wai, May Aye Khine
University of Computer Studies, Yangon

einyeinchanwai@gmail.com

Abstract

Among many types of security techniques,
steganography is the one that used to build private
communication over the public channel. This paper
proposes linguistic steganography system by utilizing
lossless compression methods, error control
techniques and syntax transformation of English
language based embedding. The secret message is
first compressed with Huffman or Shannon-Fano
compression methods to achieve higher capacity. To
maintain integrity and confidentiality of the secret
message, Hamming code error correction and SHA-1
based Keyed-hash Message Authentication Code
(HMAC) may be applied after compression
according to the required security level. Because of
using transformable syntax forms to carry hidden
information, the imperceptibility cannot be damaged
by producing meaning preserving sentences. The
proposed system is evaluated by using Reuter corpus
as a testing environment and Machine Translation
(MT) evaluation toolkit of NIST as a similarity
measuring tool. It randomly chooses 1804 sentences
from about 190 files of three publication days to
compare with an existing stego system. The result
shows that the proposed system can enhance
integrity and confidentiality of secret information by
using error control techniques.

1. Introduction

Information security is the protection of
information and information systems against
unauthorized access or modification of information,
whether in storage, processing, or transit, and against
denial of service to authorized users. It is classified
as the provision of the following three services:
1. Confidentiality : concealment of data from

unauthorized parties
2. Integrity : assurance that data is genuine
3. Availability : the system still functions

efficiently after security provisions are in place
As there are more demands to improve

techniques for information security, many techniques
like cryptography, steganography, and digital
watermarking have contributed much.
Steganographic techniques have been the most
successful in supporting hiding of critical

information in ways that prevent the detection of
hidden messages. The stego process generally
involves placing a hidden message within some
transport medium, called the carrier. The secret
message is embedded within the carrier to form the
stego medium. The use of a stego key may be
employed for encryption of the hidden message
and/or for randomization within the stego scheme.
There are three different aspects in steganography
systems:
1. Capacity : the amount of information that

can be hidden in the cover medium
2. Security : an eavesdropper’s inability to

detect hidden information
3. Robustness : the amount of modification the

stego medium can withstand before an adversary
can destroy the hidden information

Today, steganography can be applied in text
documents and web pages. In general, text
steganography methods can be classified into
formatted and linguistics methods. Formatted
methods include word shifting, line shifting, and
other techniques by changing the physical formatting
of cover text. In these methods, the locations of text
lines and words in the cover text are shifted
horizontally and/or vertically to hide information.
Apart from this, word substitution and syntax
transformation methods are used to conceal the
intended secret information by means of linguistics
approach.

In this paper, a linguistic steganography system
is constructed by using the compressing algorithms,
syntax extraction by the statistical Stanford parser,
and a syntactic method that is based on the syntax
bank. The confidentiality of secret information can
be achieved by applying error correction code (ECC)
to compressed secret message.

The rest of the paper is organized as follows. In
section 2, a brief overview of existing linguistic
steganography methods will be presented. Section 3
will explain the syntax of English language and
Section 4 describes briefly about two error control
techniques that are used in the proposed system.
Section 5 presents our proposed method and
evaluation of the proposed system. Finally, the
conclusion and further extension will be placed in
section 6.

2. Linguistic Steganography

Linguistic Steganography is concerned with
making changes that the changes do not result in
ungrammatical or unnatural text. Most of the
linguistic steganography methods use either lexical
(semantic) or syntactic transformations or
combination of both. The synonym substitution is the
popular lexical steganography method. It substitutes
the original word with one of the word that belongs
to the same synonym set of the original word. The
syntactic methods transform the grammatical style of
the original sentences.

2.1. Lexical Steganography

In [1], the original message was hidden through
use of a cover text which was shared between sender
and receiver. The algorithm replaced all the nouns,
adjectives, verbs and adverbs of cover text by their
respective synonyms from a word dictionary. All
synonyms were put in a frequency table according to
their frequencies obtained from WordNet and
Huffman coding was done to obtain codes for all
synonyms. The input text to be hidden was
compressed using Huffman Compression Algorithm
and a generated string of bits was consumed in
selection of synonyms.

Two improvements by means of the WebIT
Google n-gram corpus and vertex color coding can
be seen in [2] to address the problem that arises from
words with more than one sense. This attempt used
WordNet to provide sets of synonyms (synsets). In
addition, it only took single word substitution into
consideration in order to avoid the confusion of
finding information-carrying words during the
decoding phase. They proposed a novel coding
method based on vertex coloring by which each
synonym was assigned a unique codeword.

2.2. Syntactic Steganography

In [5], the authors developed a morphosyntax-
based natural language watermarking scheme in
which a text is first transformed into a syntactic tree
diagram where the hierarchies and the functional
dependencies were made explicit. The watermarking
software then executes binary changed under control
of Wordnet and Dictionary to avoid semantic drops.
The security of the watermarked text was enhanced
in two ways: (i) the pseudo-random order of tool
selection, and (ii) the insertion of a ‘‘pass” tool
creating void watermarks.

The research presented at [13] explored the
method of text watermarking for Korean by using
Korean syntactic dependency parser for syntactic
analysis. First, they constructed a syntactic
dependency tree of input text. Next, target syntactic
constituents were chosen to move and watermark bits

were embedded. If the watermark bit did not coincide
with the movement bit of the target constituent, the
proposed system moved the syntactic constituent in
the syntactic tree. Finally, from the modified
syntactic tree, a marked text was obtained.

The work in [7] described a method for hiding
secret information underneath a Modern Greek cover
text by applying shallow syntactic transformations to
it. The transformations were extracted automatically
by making use of limited external resources,
rendering the process easily portable to other free-
phrase-order languages. No use of Grammars,
syntactic parsers, paraphrase lexica, parallel corpora,
semantic lexica and thesauri of any kind was made.

2.3. Combining Lexical and Syntactic
Steganography

M.Topkara proposed Enigmark [11, 12], that
used orthogonal features of sentences separately for
selection and embedding. The way of embedding
was done by modifying the embedding features until
they “speak the desired message bits”. The selection
features were determined by Equmark [11, 18],
where a sentence that had a word from the selected
subset of the vocabulary was an information-carrier,
and the embedding features were based on sentence-
level linguistic features which can be “number of
prepositions in a sentence”, “a sentence being
passive or active”, “distance of certain functional
words”, or “the verb classes of the verbs in a
sentence”.

3. Syntax of English Language

The syntax of a language is the set of rules that
language uses to combine words to create sentences.
In English, the parts of speech of words combine into
phrases: noun phrase, verb phrase, propositional
phrase, adjectival phrase, and adverbial phrase. A
clause is a set of words that includes at least a verb
and probably a subject noun. A sentence is actually a
clause. But a sentence can have more than one
clause. There may be a main clause (or independent
clause) and one or more subordinate clauses. Just
about all sentences in the English language fall into
ten patterns determined by the presence and
functions of nouns, verbs, adjectives, and adverbs
[16].

The nature of the sentences can be changed
without changing the meaning of the sentences [4].
The most possible transformation of English is
active-passive transformation. This can be used for
all sentences and clauses that contain subject, verb,
and object. In addition, there is also possible to
interchange the clauses back and front. Apart from
this, there may be many other ways to transform the
sentence retaining its meaning such as topicalization,
adverb displacement, and so on.

4. Error Control Techniques

Error control techniqes are used to construct
reliable communication over unreliable media with
errors caused by channel noise during transmission.
In steganography, error controls are applied to
improve the robustness, confidentiality and integrity
of secret information before embedding secret
message’s bits into the cover media.

4.1. Hamming Code

Hamming codes can detect up to two
simultaneous bit errors, and correct single-bit errors.
All bit positions that are powers of two are parity
bits. All other bit positions are data bits. Each data
bit is included in a unique set of 2 or more parity bits,
as determined by the binary form of its bit position.
The sum of the positions of the erroneous parity bits
identifies the erroneous bit. If only one parity bit
indicates an error, the parity bit itself is in error [6]. It
needs to trick to correct burst errors. To send k
codewords of each length n, these codewords are
required to arrange in matrix, each row is a
codeword. This matrix has width n and height k. It
would normally transmit this row-by-row. The trick
is to transmit column-by-column [10].

4.2. SHA-1 based HMAC

HMAC is a specific construction for calculating
a message authentication code (MAC) involving a
cryptographic hash function in combination with a
secret key. It may be used to simultaneously verify
both the data integrity and the authenticity of a
message. Any cryptographic hash function, such as
SHA-1, may be used in the calculation of an HMAC.
The cryptographic strength of the HMAC depends
upon the cryptographic strength of the underlying
hash function, the size of its hash output length in
bits, and on the size and quality of the cryptographic
key. SHA-1 operates on 512-bit blocks and produces
160 bits hash value [8]. As the estimated collision
resistance strength of any approved cryptographic
hash function is half the length of its hash value, it is
believed to have collision resistance strength of 80
bits. Again, the estimated preimage resistance
strength is 160 bits [15].

5. Proposed Approach

In the proposed system, the input cover text
must be in English in order to use the syntax
transformation capability. It also tries to use some
error control techniques to improve confidentiality
and integrity as in other multimedia steganography.
Figure 5.1 and 5.2 respectively show the sender and
receiver of the proposed system.

Figure 5.1 Proposed System (Sender Side)

Figure 5.2 Proposed System (Receiver side)

When using error control mechanisms, it tends

to increase the number of required message bits by
adding some extra redundancy bits to control errors.
To cover this fact, the approach firstly compresses
the message as possible, and uses this saving to add
the error control bits in the embedded message
sequence at the preprocessing step. It then utilizes
Stanford parser to extract the phrase structure of the
input text sentences to get their syntax. Moreover, we
propose the syntax bank based linguistic
steganography system by doing syntax set creation,
capacity checking and syntax transformation steps at
the sender’s side. At the receiver’s side, syntax set
creation and syntax checking steps are processed to
extract the secret information from the stego text.

Syntax Set

Syntax Bank

Message bits string

Secret Message

Random
Seed

Postprocessing

Syntax Extraction

Syntax Set Creation

Message Bits Extraction
(Syntax Checking)

Stego Text

Syntax of
Stego Text

Syntax Bank

Syntax of
Cover Text

Random
Seed

Cover Text

Syntax
Extraction

Cover Text Selection

Syntax Set Creation

Syntax Set

Capacity Checking

Stego Text

Message Bits Embedding
(Syntax Transformation)

No
Enough

Yes

Message bits
string

Secret Message

Preprocessing

5.1. Preprocessing

The system first collects the characters

frequencies from a predefined text that is already
known by both sender and the receiver. Then it
compresses the incoming secret message by one of
two popular compression algorithms, Huffman and
Shannon-Fano compression methods, to achieve the
higher payload. Huffman algorithm is used when the
predefined key file has unequal character frequencies
and Shannon-Fano algorithm is used when it contains
equal frequencies to reduce the overhead of
compression. Finally, the message bits sequence is
terminated by the compressed code of the
termination character “%” because it is not possible
to delete the extra part of the cover text.

Error control codes are added to the compressed
secret message bits before embedding into the cover
text. The system allows user to choose from four
options about the robustness level – “none (only
compressed)”, “with Hamming”, “with SHA-1 based
HMAC”, “with both Hamming and SHA-1 based
HMAC”. Depending on the user’s choice, the
compressed message string is appended by Hamming
code and/or SHA-1 based HMAC as needed. In the
case with HMAC, a predefined key is used.

The message bits that are used to embed in the
cover text become longer as it applies error controls
to achieve robustness. When it uses Hamming, the
length will increase 75% of the original compressed
message sequence. With HMAC, as the proposed
method applies SHA-1 based HMAC, the length will
raise by adding 160 bits to the original sequence.

5.2. Syntax Extraction

This step uses Stanford parser to extract the
phrase structure of the input sentence. This parser is
a Java implementation of probabilistic natural
language parsers, a program that works out the
grammatical structure of sentences. For instance,
which groups of words go together (as "phrases") and
which group of words is the subject or object of a
verb. [3]

The syntax extraction step modifies the output of
this parser as necessary to get the syntax structure of
the sentence. The system firstly produces the
“wordsgroup” that contains three attributes- Name
(e.g. NP), Type (e.g. NN NN), Words (e.g. animal
testing). These wordsgroups are combined to form a
phrase to achieve the phrase structure. After that, the
phrases are grouped together to create the clause
structure as below:
NP DT NN the cure
VP MD RB VB would not exist

The summary of this clause structure is written
as the sequence of phrases’ Name attribute except
VP, verb phrase, and PP, proposition phrase started
with “by” in passive clause. In the case of VP, the

summary will use the Type attribute for determining
the sense of the clause, active or passive. The
summary will add the Word attribute when it finds
out that the current proposition phrase is started with
“by”. This summary of clause can be used to find out
the alternative syntax forms in the syntax bank at the
syntax set creation step.

These clauses are connected by conjunctions
words that are tagged with SBAR or SINV by the
parser. Beside these words, “S” is also the symbol of
representing the start of a sentence or clause by the
parser. With this sense, these words can be used to
decide the start and end of the clause within the
sentence. In the proposed system, “S”, “SINV”,
“SBAR”, and “,” are used to define the boundary of
the clauses inside of a sentence.

Finally, the clause structures of the overall
sentence are grouped together in a vector of phrase
structures, a sentence’s syntax structure.

5.3. Syntax Transformation based Linguistic
Steganography

This step can be divided into two sub-steps:
syntax set creation and syntax transformation at the
sender side or syntax checking at the receiver side.

The syntax set creation takes the syntax phrase
structure of an input sentence produced by the syntax
extraction step as input, constructs and provides a
syntax set for this sentence as output.

At the sender side, the capacity checking step
checks whether or not the selected cover text have
enough hidden capacity for the intended compressed
secret message. If so, the syntax transformation step
decides which syntax alternative to transform
according to the assigned binary sequence, and
transforms the input cover text sentence into this
chosen syntax. If not, the cover text must be re-
chosen.

For the receiver side, the syntax checking step
uses the syntax phrase structure of the stego text
sentence that is produced by the syntax extraction
step and the syntax set that is the output of the syntax
set creation step to finds out the corresponding
binary sequence.

5.3.1. Syntax Set Creation

The proposed method uses syntax bank that

consists of a number of the syntax groups and has
already shared between the sender and the receiver.
This set creation task takes the syntax phrase
structure produced by the above extraction step as
input. It then uses this syntax to search for its
transformable syntax alternatives group in syntax
bank. If there is more than one clause in the input
sentence, the syntax set forms by the combination of
syntax groups of all clauses in the sentence.

A syntax set is a combination of all available
syntax alternatives for all clauses of a sentence.
Hence, the bigger the syntax set, the more message
bits it can be hidden. All members of the set are
semi-randomly assigned with a unique binary
sequence for each. This syntax set’s size of a
sentence can be calculated by the following equation.
� � ∏ ��

�
��� (1)

Where
M= the number of syntactic forms for each clause
N = the number of clauses in a sentence
L = the size of syntax set

The number of secret bits which can be hidden
in a sentence is log2 of the size of syntax set of the
sentence: log2L of Eq (1).

Moreover, sender and receiver have already
shared a key that is used as a seed to produce the
same random sequence that is used to assign to the
syntactic rules of the set. To generate the random
sequence without repeat, a newly generated random
number is checked whether it is already exist in the
sequence. Only the sender and receiver who shared
the seed can generate the random sequence of correct
order. Even the intruder obtains the syntax set; it
cannot be possible to assign the correct binary
numbers sequence because of lack of knowledge
about the seed to produce the sequence.

5.3.2. Capacity Checking

This step checks the hidden capacity of the input

text. It first calculates how many bits can be hidden
in the input cover text according to the syntax sets of
the input cover text sentences. At the text level, the
total number of message bits that can be hidden in a
text is the summation of the hidden capacity of all
sentences in the text.
Capacity= ∑ Si

k

i=1 (2)
where k is the number of sentences in the text and S
is the hidden capacity, Log2L, of each sentence. If the
capacity is greater than or equal to the number of
secret message bits intended to hide in this cover
text, the cover text is ready for actual transformation.
If not enough, the sender has to re-choose again for a
larger cover text.

5.3.3. Syntax Transformation

This step transforms the input sentence into the
desired syntax form. As for a prototype, our system
now implemented and tested with only active-passive
transformation. This can be done by the following
procedure.
• The phrase structure of the sentence produced by

the parser is used to define subject (noun phrase
that come before verb phrase), verb (verb phrase),
object (noun phrase that come after verb phrase),
and other complement phrases (such as adverb
phrase).

• The main action verb in the verb phrase is then
transformed into its past participle form with the
help of the verb table. The verb phrase for the
passive form of the sentence is constructed by
adding the appropriate singular/plural form of
helping verb to the past participle form of the main
verb.

• The passive sentence is constructed by making
direct object into the subject, adding the passive
formed verb phrase, and placing the original
subject into a propositional phrase beginning with
“by”.

There are some limitations in interchanging the
active sentence into passive form. These are because
of the performance of the parser used. For our
system, we assume that the parser used, the Stanford
parser, is a perfect parser.

5.4. Postprocessing

This step is applied at the receiver side. It first

generates the exact compressed code table by using
the predefined text and the compression algorithms.
It then searches the termination bits in the extracted
bits sequence and decompresses by the code table. If
needed, the system processes error control code
decoding of the extracted bits according to the
sender’s choice. The output of this step is a secret
message in human readable form.

5.5. Experimental Result

The proposed system is evaluated with its three
requirements, capacity, imperceptibility, and
robustness concerns by using Reuters corpus [17] as
testbed and MT Evaluation Tool Kit of NIST [14] as
a testing tool.

5.5.1. Evaluation of Capacity

With the proposed system, it can be seen that the
number of message bits to embed in the cover text
increases when applying error control methods. As a
result, this fact causes more sentences that are
required to carry these bits. But, the length of error
controlled message bits is nearly the same as their
ordinary ASCII code length because of compression
methods that are applied to secret message before
embedding into the cover text. According to the
experiment done on the Reuter corpus, the payload
ratio is about 1:8 for message bits to clauses required
to carry these message bits.

The number of bits after adding one or both of
ECC methods always higher than that of ordinary
only compressed message. This fact can be seen at
Figure 5.3 by means of 10 messages that regularly
increased in lengths. As the original message length
increases, the number of message bits to embed in
the cover text also increases. Aside from this,

application of error control methods, Hamming code
or SHA-1 based HMAC, provides less message bit
than that of using both two methods.

Figure 5.4 represents the number of sentences
required to embed these 10 messages by adding error
control methods. This graph can tell that the
application of error control codes required larger
cover text for embedding secret information while
maintaining its security.

Figure 5.3 Comparison of the number of message
bits when applying error control methods

Figure 5.4 Comparison of the number of
sentences to carry message bits when adding error

control methods

5.5.2. Evaluation of Imperceptibility

Imperceptibility of the proposed system can be

measured by BLEU and NIST scores
measures can be shown by ordinary compressed form
of secret message “test” and its error controlled
forms. NIST comparison of these forms is described
at Figure 5.5 while BLEU scores can be presented at
Figure 5.6. From these figures, we can summarize
that their BLEU scores are always greater than or
equal to 0.88. For NIST, all forms of sentences
provide higher scores as their N
increases. Thus, we can say that the usage of error
control codes cannot harm the imperceptibility of the
proposed system considerably.

application of error control methods, Hamming code
1 based HMAC, provides less message bits

both two methods.
Figure 5.4 represents the number of sentences

required to embed these 10 messages by adding error
control methods. This graph can tell that the
application of error control codes required larger

ing secret information while

Comparison of the number of message
bits when applying error control methods

Comparison of the number of
sentences to carry message bits when adding error

control methods

Evaluation of Imperceptibility

Imperceptibility of the proposed system can be
asured by BLEU and NIST scores. These

measures can be shown by ordinary compressed form
of secret message “test” and its error controlled

e forms is described
while BLEU scores can be presented at

From these figures, we can summarize
that their BLEU scores are always greater than or
equal to 0.88. For NIST, all forms of sentences
provide higher scores as their N-gram length
increases. Thus, we can say that the usage of error
control codes cannot harm the imperceptibility of the

Figure 5.5 NIST Comparison of Ordinary
Compressed Message and its error controlled

forms

Figure 5.6 BLEU Comparison of Ordinary
Compressed Message and its error controlled

form

5.5.3. Evaluation of Robustness

There are three types of attacks that can be seen
in linguistic steganography: changing, inserti
deletion. Here, while changing attack can
value of message bits, two other attacks can cause
burst errors propagated to the end of the message bits
string. By means of security, these attacks can
threaten confidentiality and integrity of secret
message.

To overcome these attacks,
applies two error control codes.
used for controlling the changing attacks while SHA
1 based HMAC is applied to face with the burst error
propagation caused by insertion

Hamming code detects up to 2 error
corrects 1 error per each 7 bits codeword. In
they suggest to transmit codeword in the column
order instead of ordinary row order. When using this
trick, they say that without any other errors, up to k
consecutive errors can be corrected when k
codewords are used. In the proposed approach, the
message bits are divided into 4 bits blocks to use
Hamming code of 4 data bits of 7 bits codeword.
According to [9], the proposed system can correct
burst error of up to 25% of embedded message bits.

In the case of HMAC, the security relies on the
resistance of underlying hash algorithm, SHA
the proposed system. According to its output hash
size, SHA-1 can resist against less than 80 bits for

NIST Comparison of Ordinary

Compressed Message and its error controlled

Comparison of Ordinary

Compressed Message and its error controlled

Evaluation of Robustness

There are three types of attacks that can be seen
in linguistic steganography: changing, insertion, and

. Here, while changing attack can change the
value of message bits, two other attacks can cause
burst errors propagated to the end of the message bits
string. By means of security, these attacks can
threaten confidentiality and integrity of secret

To overcome these attacks, the proposed system
applies two error control codes. Hamming code is
used for controlling the changing attacks while SHA-
1 based HMAC is applied to face with the burst error
propagation caused by insertion and deletion attacks.

Hamming code detects up to 2 errors and
corrects 1 error per each 7 bits codeword. In [10],
they suggest to transmit codeword in the column
order instead of ordinary row order. When using this
trick, they say that without any other errors, up to k
consecutive errors can be corrected when k
codewords are used. In the proposed approach, the
message bits are divided into 4 bits blocks to use
Hamming code of 4 data bits of 7 bits codeword.

, the proposed system can correct
burst error of up to 25% of embedded message bits.

HMAC, the security relies on the
resistance of underlying hash algorithm, SHA-1 in
the proposed system. According to its output hash

1 can resist against less than 80 bits for

collision resistance and 160 bits for preimage
resistance. This fact says that the proposed system
can detect up to 160 errors in the message bits string.

6. Conclusion and Further Extension

This work developed a prototype system to
express the usability of error control techniques in
syntactic steganography. To overcome the capacity
requirement of adding error control codes for
improving robustness, the system first compress the
secret message. According to the experiments, it can
be shown that ECC applied compressed message
length is nearly the same as its ordinary ASCII coded
length. To maintain secrecy, the system uses the key-
controlled random assignment for syntax forms in the
syntax set. The same random sequence cannot be
generated by the intruders without having the key
that is the basic of random number assigned to syntax
forms. Based on the clause level structure of sentence
to determine the transformability of the sentence, the
proposed method can carry more secret bits than the
existing methods. Moreover, the perceptibility of the
sentence will not be higher after embedding because
some sentences can carry message bits without
transformation. This is because the ordinary syntax
of these sentences already represents the required
bits.

The future works can be done by applying more
secure random number generation methods. A higher
degree of confidence can be achieved by using MAC
as a basis of a pseudo random number generator
(PRNG). Moreover, when linguistic structure is used
as an embedding unit, the method depends on the
development of natural language processing (NLP)
tools. There is no perfect NLP tool now. This can
cause imperfect implementation of steganography
application. The more powerful NLP tools are used,
the more prefect steganography application can
result. Therefore, it is looking forward to use perfect
NLP tools.

References

[1] A.M.Nanhe, M.P.Kunjir, S.V.Sakdeo, “Improved

Synonym Approach to Linguistic Steganography”,
http://dsl.serc.iisc.ernet.in/
~mayuresh/ImprovedSynonymApproachToLinguistic
Steganography.pdf, 2008 (accessed at 15.3.2011).

[2] C.Y.Chang, S.Clark, “Practical Linguistic
Steganography using Contextual Synonym
Substitutionand Vertex Colour Coding”, in
Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP-10),
pp.1194-1203, Cambridge, MA, October 2010.

[3] D. D. Lewis, Y. Yang, T. Rose, F. Li,”RCV1: A New
Benchmark Collection for Text Categorization
Research”, Journal of Machine Learning Research,
5:361-397, 2004.

[4] Error detection and correction, Encyclopedia of
Microcomputers: Volume 6, p. 343.

[5] H.M.Meral, B.Sankur, A.S.Özsoy, T.Güngör, and
E.Sevinc, “Natural language watermarking via
morphosyntactic alterations”, Journal of Computer
Speech and Language Vol.23 Iss.1, pages 107–125,
2009.

[6] Introduction to linear codes, January 2010,
http://www.cs.cmu.edu/~venkatg/teaching/codingtheo
ry/notes/notes1.pdf, Accessed at 25.7.2012

[7] K. L. Kermanidis, “Capacity-rich Knowledge-poor
Linguistic Steganography”, Journal of Information
Hiding and Multimedia Signal Processing, Volume 2,
Number 3, July 2011.

[8] M. Bellare, R. Canetti, H. Krawczyk, "Keying Hash
Functions for Message Authentication", 1996.

[9] M. Grosvald, C. O. Orgun, “Free from the Cover
Text: A Human-generated Natural Language
Approach to Text-based Steganography”, Journal of
Information Hiding and Multimedia Signal
Processing, Volume 2, Number 2, April 2011.

[10] M. Humphrys, “Hamming Code (1 bit error
correction)”,http://computing.dcu.ie/~humphrys/Notes
/Networks/data.hamming.html

[11] M. K. Topkara, “New Designs for Improving The
Efficiency and Resilence of Natural Language
Watermarking”, Ph.D thesis, Purdue University, West
Lafayette, Indiana, August 2007.

[12] M.Topkara, U.Topkara, and M.J.Atallah, “Words Are
Not Enough: Sentence Level Natural Language
Watermarking”, MCPS’06, Santa Barbara, California,
USA, October 2006.

[13] M.Y.Kim, “Text Watermarking by Syntactic
Analysis”, 12th WSEAS International Conference on
Computers, Heraklion, Greece, July 2008.

[14] N. I. of Standards and Technology, “Machine
translations benchmark tests provided by national
institute of standards and technology,”
http://www.nist.gov/speech/tests/mt/resources/scoring
.htm, Accessed at 21.11.2012.

[15] Q.Dang, “Recommendation for Applications Using
Approved Hash Algorithms”, NIST Special
Publication 800-107, February 2009.

[16] Sentence patterns, http://www.towson.edu/ows/
SentPatt.htm, Accessed at 28.11.2012

[17] Text Categorization Corpora, http://disi.unitn.it/
moschitti/corpora.htm, Accessed at 21.11.2012.

[18] U. Topkara, M. Topkara, M. J. Atallah, “The Hiding
Virtues of Ambiguity: Quantifiably Resilient
Watermarking of Natural Language Text through
Synonym Substitutions”, MM&Sec’06, Geneva,
Switzerland, September 26–27, 2006.

