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Abstract 
 

       In this paper, an approach is built to 
automatically detect acoustic events that are 
produced in a meeting or lecture room environment. 
Six audio classes are to be classified through this 
approach. The classes considered are music, speech, 
clapping, door slam, cough, and laughter. Several 
events samples are collected from the Internet. 
Support Vector Machines (SVMs) perform training 
and testing the events classification on perceptual 
and MFCC features set. A hierarchical clustering 
scheme is used therefore the required number of 
binary SVM classifier is also reduced. The system is 
tested on different data sets and its effectiveness is 
determined with classification accuracy on audio 
event frames.  
 
 
1. Introduction 
 
  Acoustic event detection (AED) is a part of 
computational auditory scene analysis may be used 
to detect and identify acoustic events. AED task is 
closely related to the more general task of noise 
classification and recognition. Acoustic event 
detection is providing a lot of advantages in 
surveillance and security applications.  Video sensors 
used to get the information but due to the occurrence 
of any situation when information is unreliable, 
unavailable in the darkness and expensive. However 
audio sensors are simple and cheap so that audio 
information becomes important cues in many diverse 
areas.   
         Meeting recording is reflected in a rich variety 
of acoustic events, either produced by the human or 
objects. Speech is the most informative acoustic 
event, but other kind of sounds may provide helpful 
information in environments. In this implementation, 
a system which is able to detect six types of audio 
events; clapping, door slam, laughter, speech and 
music in the meeting room environment is developed 
for the Acoustic Event Classification task. 
          Acoustic event detection and classification 
(AED/AEC) may help to detect and describe the 
human and social activity that takes place in the 
meeting room for example;                
� clapping or laughter inside a speech discourse 
� a cough in the middle of meeting 

� a clapping at the end of the meeting 
� door noise when the meeting has just started. 

This information is useful in applications such as 
event monitoring systems, multimedia information 
retrieval and intelligent meeting or lecture rooms. 
 
2. Related Work 
 
 In [1], the author compared two different 
approaches to alarm sound detection and 
classification, namely: ANN and a technique 
specifically designed to exploit the structure of alarm 
sounds and minimize the influence of background 
noise. The authors compared to the task of non-
speech environmental sound recognition in [2]. The 
Learning Vector Quantization (LVQ) and ANN have 
been used. Bird species sound recognition has been 
performed in [3]. The acoustic event recognition for 
four different environments - kitchen, workshop, 
office and outdoors has been applied in [4]. The 
paper discusses a prototype of a sound recognition 
system focused on an ultra low power hardware 
implementation in a button-like miniature form. In 
[5], the authors have considered the detection of 
“laughter” in meetings with SVM. In their 
experiments, MFCC features outperform the 
proposed spatial features and modulation spectrum 
features. The authors have considered human activity 
detection in public places mainly by concentrating on 
coffee shop activity detection in [6]. A wide range of 
features and two distinct classifiers (k-nearest 
neighbors and GMM) have been compared. A system 
of non-speech environmental sound classification for 
autonomous surveillance has been discussed in [7]. 
Features based on a wavelet transformation and 
MFCC features performed the best. In [8], the 
authors have applied two classification techniques 
(SVM and GMM) to audio indexing. They have 
performed a discrimination of “speech” and “music” 
in radio programs. The system analyzes the acoustic 
activity at the recording site, in [9] and using a set of 
low-level acoustic features the system is able to 
separate all interesting events in an unsupervised 
manner in office environment. Recognition of sounds 
related to the bathroom environment has been done 
in [10] and an HMM classifier and MFCC features 
have been used. Preliminary results showed high 
average accuracy. The work in [11] presents a 
hierarchical approach of audio based event detection 



for surveillance. A given audio frame is firstly 
classified as vocal or non-vocal, and then further 
classified as normal and excited. The approach is 
also based on a GMM classifier and LPC features. 
 
3. Audio Feature Representation  
 
 The first task of audio feature extraction is 
down sampling the input signal from various 
sampling rates to 8 kHz, mono channel .wav format 
with 16 bit resolution.  Frames are of size 128 
samples (16 ms) with 50% (64 samples or 8 ms) 
overlap in each of the two adjacent frames. Next, a 
frame is hamming-windowed. Two types of features 
are computed from each frame: (i) perceptual 
features composed of zero crossing rate (ZCR), 
short-time energy (STE), spectral centroid (CE), 
spectral roll-off (RF), spectral bandwidth (BW) and 
(ii) mel-frequency cepstral coefficients (MFCCs). 
These statistics are considered as feature sets for the 
audio sound to be determined.  
 
3.1. Perceptual Features 
 
3.1.1. Zero Crossing Rate (ZCR) 
 

 It measures the number of zero crossings of 
the waveform within a frame and is calculated as: 
 

 
  
where s(n) is sign of the signal value at the time 
index n and N is frame length. 
 
3.1.2. Short Time Energy (STE) 
 
Total signal energy in a frame calculated as:  
   

 
where  s(n) is signal value at the time index n and N 
is frame length. 
 
3.1.3. Spectral Centroid (CE) 
 
       The centroid is a measure of the spectral 
“brightness” of the spectral frame and is defined as 
the linear average frequency weighted by Discrete 
Fourier Transform (DFT) amplitudes, divided by the 
sum of the amplitudes: 
 

 
                 
where f(i) is the frequency value at the frequency i 
and a(i) is DFT amplitude. 

3.1.4. Spectral Roll-off (RF) 
 
        It is a measure of the skewness of the spectral 
shape and is defined as a frequency f below which 
the c percentage of the spectral amplitudes is 
concentrated (here c=95): 
 

 
    
 where a(i) is amplitude of DFT. 
 
3.1.4. Spectral Bandwidth (BW) 
 
        A measure of spreading of the spectrum around 
the spectral centroid: 
 

 
               
where f(i) is the frequency value at the frequency i 
and a(i) is DFT amplitude. 
 
3.2 Mel-frequency Cepstral Coefficients(MFCC)  
 
      MFCC are short-terms spectral features and have 
been used very successfully in the field of speech 
recognition as classification features for speech audio 
signals. The processing sequence for finding the 
MFCCs of an audio signal is following: 
•  Window the data with a Hamming Window 
• Find the amplitude values of the DFT of the data 
•  Convert the amplitude values of filter bank 
outputs 

• Calculate the log base 10 
• Find the  discrete cosine transform  

 
4. Support Vector Machines (SVMs) 
 
       SVM is a supervised learning machine and 
outperforms many popular methods for text 
classification. It is widely used in pattern recognition 
areas such as auditory context recognition, face 
detection, isolated handwriting digit recognition, and 
pattern recognition and gene classification. SVM 
classifier that discriminated the data by creating 
boundaries between classes rather than   estimating 
class conditional densities, it may need considerably 
less data to perform accurate classification. SVM are 
fundamentally binary classifiers, but any number of 
classes can be accommodated by first considering 
linearly separable classes, i.e., two classes which can 
be perfectly separated using a linear hyper plane as a 
decision boundary. SVM training is based on the idea 
of maximizing the margin between any decision 
boundary and the closest observation at each side of 
the hyper plane, i.e., the goal is to maximize the 



distance from the closest class representative points 
to the decision boundary. In nonlinearly separable 
case, the SVM replaces the inner product x .y by a 
kernel function K( x . y) implicitly maps the input 
vectors into a high dimensional feature space. The 
most often used kernel functions in SVM 
applications are the following: 
 
i.   Radial Basis Function (RBF)  
  K(  x , y )=exp(-|| x - y ||2/2σ2)     (6) 
ii.  Polynomial                    
   K(  x , y )=( x . y + 1)d               (7) 
iii. Multi-layer perception           
   K(  x , y )=tanh ( κ (x . y ) – µ)   (8) 
 
Where σ, d, κ and µ are kernel parameters. This 
method uses Radial Basis Function (RBF) kernel, 
because it was empirically observed to perform better 
than other two. 

In this paper, we have implemented multi-
class classification task is done by a hierarchical 
classification structure so that number of SVMs to be 
used can be reduced to N-1 instead of  
classifiers which is usually needed for classifying N 
classes.   
 
5. Proposed Method 
 
        Based on the cepstral features and perceptual 
features, the proposed system is designed as depicted 
in Figure 1. Exploiting both perceptual and cepstral 
features described in Section 4, the overall system is 
built.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Structure of Acoustic Event Detection  

 
5.1 Classification Architecture 
 
     A hierarchically clustering scheme with a SVM 
at each node of this acoustic event detection system 
is employed as the classification scheme. In order to 
detect the above nominated six classes, the 
classification is built by five SVMs as illustrated in 
Figure 2. In this classification hierarchy, three levels 

classification is adopted. First, SVM 1 classifies 
music/speech or clapping /door slam/cough/laughter. 
In the second level, there are two classification 
nodes: SVM 2 and SVM 3. At this level music or 
speech classification is performed by SVM 2 while 
differentiation between clapping/door slam or cough/ 
laughter is accomplished by SVM 3. Finally, SVM 4 
and SVM 5 operate for discrimination between 
clapping or door slam and cough or laughter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Figure 2. Architecture of SVM classification 

 
In Table 1, the analysis of feature 

representation suitable for all nodes of SVM 
classification is shown. In this table, average 
discriminating accuracy using several features set for 
each SVM is listed. It could be noticed that for most 
of the classification nodes, high accuracy can be 
obtained with combination of MFCC and perceptual 
features rather than using one type of feature.   

 
6. Experimental Study 
 
    The audio files used in experiment are 
collected from various repositories including 
following: 

1. http://www.dcs.shef.ac.uk/spandh/projects/s
hatr 

2. http://www.partnershnrthyme.com/soundfx/
human.shtml 

3. http://www.archive.org/search.php 
4. http://www.mit.edu   

Table 1. Experiment result on several features set 
Classifiers MFCC Perceptual  MFCC+Per: 

SVM1 96.35 0.50 90.00 1.00 93.37 
SVM2 99.35 0.05 79.35 0.05 99.40 
SVM3 87.20 0.20 82.35 0.35 90.73 0.32 
SVM4 98.50 95.75 0.15 98.45 0.35 
SVM5 88.00 1.00 89.50 0.50 91.70 0.10 

Audio 
Data 

Feature 
Extraction 

ZCR 

STE 

CE 

RF 

BW 

MFCC 

SVM 
Classification 

Laugh 

Cough 

Doorslam 

Clapping 

Speech 

Music 

Audio 
Data 

Cough 

Door slam 

Clapping 

Cough 

Laughter 

Clapping 

Door slam 

Speech 

Music 

Clapping 

Door slam 

Cough 

Laughter 

Music 

Speech 

Laughter 

SVM 1 

SVM 3 

SVM 5 

SVM 4 

SVM 2 



Table 2. Duration and Accuracy of the Training and Testing Data 
Type Training Testing1 Testing2 Testing3 Testing4 Testing5 

Duration Accuracy Duration Accuracy Duration Accuracy Duration Accuracy Duration Accuracy Duration Accuracy 

Music 12s 86.50% 60s 71.71% 104s 63.91% 60s 70.11% 119s 86.79% 120s 86.73% 

Speech 20s 96.00% 173s 53.40% 360s 69.28% 638s 89.82% 813s 81.79% 1055s 96.11% 

Clapping 4s 100% 7s 100% 14s 99.37% 18s 99.96% 21s 100% 21s 100% 

Door slam 4s 80.60% _ _ _ _ _ _ 1s 77.60% 2s 62.4% 

Cough 4s 73.00% _ _ 2s 69.6% _ _ 2s 100% 3s 69.6% 

Laughter 4s 95.40% _ _ _ _ 4s 99.20% 4s 99.20% _ _ 

 
The speech audio files are selected from 

lecture room recording where language of media is 
English. Most of the speakers are males. The 
database used in our experiments is composed of 
3648 seconds in total length including training and 
testing in the meeting room or lecture room. Events 
are classified in 1s clip and each clip is labeled as 
one of the pre-defined six audio classes. It is 
partitioned into training set of about 48 seconds and 
five test sets of about 3600 seconds. In Table 1, data 
compositions of train and test sets are listed along 
with their duration. These test data sets are created 
by concatenating the specific events with varying 
durations where cough and laughter events are drawn 
from training samples. 

In experiments, all SVMs are learned with 
RBF kernel. In creating training data, it is designed 
with segment of 12 s music, 20 s long speech 
segment, and clapping, door slam, cough, laughter 
clips each of which are 4 s in length. However, in all 
testing data sets, number audio events and their 
duration contained are at random and only the total 
length in each class are described  Table 2. 
According to the experimental results, it is found that 
the proposed approach can obtain highest accuracy at 
clapping event in all test sets.  
 Table 3 also shows the overall accuracy with 
corresponding total duration used in training and 
testing. The average accuracy for training set is 
88.58% and that of all test sets is 83.79%.  
 
Table 3. Accuracy of the training and testing  

Acoustic 
Events 

Training set Testing set 
Duration Accuracy Duration Accuracy 

Music 12s 86.50% 463s 75.85% 
Speech 20s 96.00% 3039s 78.08% 

Clapping 4s 100% 81s 99.87% 
Doorslam 4s 80.60% 3s 70% 

Cough 4s 73.00% 7s 79.73% 
Laughter 4s 95.40% 8s 99.20% 

  
In Figure 3, the resulted accuracy for 

training and testing are illustrated. Overall error rates 
for both training and testing are also shown in Figure 
4. Through the tables and figures, it is obvious that 
the proposed method achieve reasonable accuracy 
rates at all events. It is expected that higher accuracy 

could be obtained with the expense of more training 
data.  

 
 

 
 

 
 

Figure 3. Overall accuracy of training and testing 
 
 

 
 

 
 

Figure 4. Overall error rate of training and testing 
 



7. Discussion 
 
        When SVM based method is used for acoustic 
event detection and classification, it is shown that it 
has good performance in audio classification. SVM 
 provide efficiency, illustrating it gives generalized 
ability to classify events unseen in the training set. 
SVM takes long time to train and needs to select 
kernel function and labels them which are practiced 
by trial and error. Combination of perceptual features 
and cepstral features can enhance the performance in 
detecting the events rather using only one of them. 
Thus, in all classifiers, both perceptual and cespstral 
features are applied. In the experiments, data are 
collected from many sources. Using training and 
testing samples drawn from a unique environment 
can enhance the overall accuracy of the system.  
 
8. Conclusion 
 
         This implementation attempts to deal with the 
problem of classifying acoustic events in a 
meeting/lecture room environments. To obtain the 
best performance, the system analyzed several 
feature sets and SVM classification on data sets. The 
best results could be achieved with features that is 
the combination of MFCC and Perceptual Features. 
As the system uses a hierarchical clustering scheme, 
the required number of classifier is reduced. 
Experimental study conducted on 5 data sets 
indicates that this approach is suitable for classifying 
audio events. Classification of more acoustic events 
could be encountered in the domain environment 
with more balanced classification architecture is one 
possible direction of future work.  
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