
Availability Modeling and Analysis in

a Virtualized Servers Network

Tuan Anh Nguyen, Jong Sou Park

Korea Aerospace University, Seoul, Korea

anhnt@kau.ac.kr, jspark@kau.ac.kr

Abstract

Virtualization has been considered as an

inventive approach for modern information

systems in the revolutions of cloud computing and

big data. Virtualized systems have been taken into

account in research in different granularities. In

the trend of research on virtualized systems, this

paper presents a new approach of virtualization

in a data center. Our work aims to propose a

network of virtualized servers incorporated with

live VM migration to guarantee the localization of

fault-tolerance. In order to maximize resource

utilization and system availability, we introduce

three rules of live VM migration inside the

network. The proposed network system is modeled

by Stochastic Reward Net (SRN) and analyzed by

Stochastic Petri Net Package (SPNP). As an

important measure of interest, system availability

is our scope of analysis. The analysis results show

new findings that are only revealed in a network

view. Networking incorporated with live VM

migration enhances remarkably system

availability. Based on the analyses, we challenge

the system developers to pay more attention on the

core points of system.

1. Introduction

Industry sector is accelerating the adoption of

virtualization technology to reduce the burden of

IT infrastructure costs in data centers and

information systems. A strict requirement in

design and administration of a data center from

commercial side is always considered as a

prerequisite conforming the service level

agreements (SLAs) [1]. As a term in each SLA,

availability is usually an important measure of

interest to maintain proper services. In order to

deploy and maintain 24/7 applications and

services in data centers, virtualized computing

platforms have been emerging as one of

appropriate solutions. As the core of the

virtualized computing systems, virtual machine

monitor (VMM) (also known as hypervisor) with

the features of transparency, isolation,

encapsulation and manageability makes

computing systems with better scalability,

migration and server consolidation [2]. Thanks to

virtualization solution on hardware resources in

physical systems, different and multiple

computing environments called virtual machines

(VMs) are created and fostered to maintain the

flexibility and competency of long-life and large-

scale applications. On each VM, system designers

can launch required operating systems (OSs)

which in turn allow multiple applications (Apps)

running. Virtualization has been adopted into

different levels of computing system including

storage virtualization, network virtualization,

client virtualization and server virtualization. Kim

et al. [3] initiated the research trend on virtualized

system. Machida et al. in work [5] proposed the

configuration of a data center adopting

virtualization called virtualized data center

(VDC). Wei et al. [7] built a stochastic petri net

(SPN) model for a typical architecture of a VDC

regarding task circulation and workload. In this

paper, we propose a network of virtualized

servers. We call this network as a virtualized

servers network (VSN). We introduce a

virtualized servers system (VSS) in which two

virtualized servers are combined together as a

single node in the network. We construct the

stochastic reward net (SRN) model of the whole

network and analyze the availability and related

measures of interest using Stochastic Petri Net

Package (SPNP) [8]. We come up with new

findings that challenge the system developers to

incorporate more effective techniques to

migration and concern more on the VM

underlying layers including hardware layer and

VMM layer to gain more system availability.

The rest of this paper is organized as follows.

In Section 2, related work is introduced. Section 3

presents system architectures including VSS and

VSN. The construction of analytical SRN model

of VSN is described in Section 4. The numerical

results of different output measures of interest are

shown in Section 5. Section 6 concludes the paper

with contribution and future work.

2. Related Work

Machida et al. [5], [6] proposed the oriental

ideas of virtualization on data centers. At first, the

work [5] initiated the research trend by discussing

the issues of perform-ability management in a

data center incorporated server virtualization and

software rejuvenation, which is called virtualized

data center (VDC). Furthermore, the work [6]

proposed a combined server rejuvenation

technique in which both VMM and VM

rejuvenations are simultaneously performed. A

well-organized live VM migration regarding the

above rejuvenation scheduling technique is

introduced. In a more detail view, Kim et al. [3]

studied a virtualized system by using continuous

time Markov chain (CTMC) models to analyze

the availability of a particular virtualized system

regarding hardware layer and virtualized layer.

Machida et al. [9] focused on analysis of

virtualized layers with the incorporation of

rejuvenation for both VMMs and VMs. In work

[4], the authors extended the above study by

incorporating VM live migration. Rezaei et al.

[10] combined time-based rejuvenation policy for

VMM layer and prediction-based policy for VMs

layer. Han et al. [2] considered another aspect of

the research trend in which a workload-based

rejuvenation is integrated. Wei et al. [7] built a

stochastic petri net (SPN) model for a typical

architecture of a VDC regarding task circulation

and workload. The common lack of contemporary

researches is either focusing on a single

virtualized server in very detail or trying to build

a general analysis model for the whole data center

without considering thoroughly the interaction

between nodes in the network of servers in a data

center. Most of researches try to improve system

availability by incorporating different

rejuvenation strategies. Live VM migration is

implemented in an ambiguous connection of two

servers without explicit description. Most work

focused on single or two hosts virtualized system.

It is necessary to model and analyze the

availability of virtualized system consisting

multiple hosts. In this work, we scale up the scope

of a single virtualized system and scale down the

scope of a virtualized data center to study a typical

configuration of servers in a network view. We

Networking hardware

VMM2

VM2

OS

App App

VMM1

VM1

OS

App App

Virtualized Server 1 (VS1) Virtualized Server 2 (VS2)

iVM1(a)

iVM1(b)

iVM2(a)

iVM2(b)

Shared Storage System

Host 1

(PS1)

Host 2

(PS2)

Storage Area Network (SAN)

Figure 1. Virtualized Servers System Architecture

focus on the migration activity between nodes in

the network. Moreover, taking the advantage of

the flexibility of a set of guard function in

Stochastic Reward Net (SRN) facilitates us to

capture dynamic behaviors of the system in very

detail.

3. System Architecture

We here present a single virtualized servers

system, then we extend the system in a typical

network topology.

3.1. Virtualized Servers System

The architecture of a VSS with multiple-

virtual machines is depicted in Figure 1. The

proposed virtualized system consists of two

virtualized servers, Virtualized Server 1(VS1) and

Virtualized Server 2 (VS2). Each of VSs has

identical internal structure composed of a physical

server computer called Host (H or PS), a virtual

machine monitor (VMM), one upper virtual

machines (VMs), an operating system (OS) on

VM, and multiple applications/services (Apps). A

Host holds the role of a physical underlying

hardware platform which allows other upper

software subsystems to run on. Likewise, a VMM,

as a host program running on a Host, enables the

physical computer to support multiple, identical

execution environments to guest OSs. And similar

to a physical computer, a VM consists of an OS

which in turn serves as a host program to multiple

Apps running on top of it. All the Apps are in

charge of processing incoming requests.

Nevertheless, in the scope of this paper, we

disregard the involvement of OS and Apps in the

modeling and analysis. And we neglect the

workload effects [11], [12] which are not

dominant in our research on the system

evaluation. We therefore denote the OS and Apps

elements same in both virtualized servers to

indicate that workloads are not different.

Furthermore, we incorporate a storage area

network (SAN) interconnected to the both servers.

SAN enables the storage system to appear as a

local memory (iVM) associated with the VMs in

virtualized servers.

3.2. Virtualized Servers Network

Based on the abovementioned VSS, we extend

the isolated architecture of VSS by constructing a

network of VSSs (see Figure 2) conforming 3-

level Fat Tree topology [13] with n=4 (n means

the number of ports on the switches). The network

topology enables VSSs to connect efficiently to

each other. We choose a typical configuration

called Virtualized Servers Network (VSN). A

VSN consists of eight PSs in four VSSs.

Currently, we focus on the network behaviors of

VSSs hence we neglect the role of networking

devices in our modeling and analysis. And we

assume that the migration malfunctions are not

taken into account in our modeling. This point

could be an extension in future works.

4. Stochastic Reward Net Model

The SRN model of VSN is shown in Figure 3.

The model looks symmetrical so we neglect the

index in notations in the following description to

shorten model explanation unless it is necessary

to mention clearly. For the sake of network

VSS1 VSS2 VSS3 VSS4

Core

Aggregation

Edge

Figure 2. 3-level Fat Tree Topology of a Virtualized Servers Network

analysis, we compact a complicated VSS model

by using two-state model formulation. A SRN

model of a VSS now consists of VM model and

VM underlying layer (VMU) model. The dynamic

behaviors of both layers are simply modeled as in

a couple of up state and down state depicted as

places (PVMup, PVMdown) and (PVMUup,

PVMUdn). Initially, there are a specific number

of VMs (nVM) running on the virtualized

environment in each VSS. A VM is in upstate

(PVMup) if it is running in normal state or failure-

probable state. And a VM is in down state if it is

in failure state, rejuvenated state or down-

dependent state (i.e. VM is down because of the

underlying layers). As soon as a VM falls into

down state because of diverse causes including

VM failure, VM/VMM rejuvenation, SAN

failure; the transition TVMdn is enabled to

remove a token in PVMup and deposit to PVMdn.

The VM in down state can return to up state

through the transition TVMrecov by recovery

measures. On the other side, we squeeze the

underlying layer of VMs in a VSS by assigning

one token in the VMU model. Similar to VM

model, the VMU is considered at first in normal

state (PVMUup). The operation state of VMU is

switched to down state if any of down causes

occurs such as all VMMs are in

failure/rejuvenation/down states or all PSs are in

failure. The rate of the transitions TVMUdn,

TVMUrecov, TVMdn and TVMrecov can be

assigned by the values of mean time to failure

equivalent (MTTFeq) and mean time to recover

equivalent (MTTReq) computed in the work [14].

However, in this paper we consider these

parameters as adjusted variables to observe the

dependence of steady state availability (ssavail) of

the whole system. We denote the ordering number

(1-4) in the place and transition names to indicate

those of the respective VSS. Now we construct the

connection between VSSs to support VM live

migration. The migration of VMs within VSN is

incorporated regarding the rule of least-load

optimization (LLO) and the rule of maximum

capacity (MAXC). The migration of VMs

between VSNs in a VDC is conformed the rule of

maximum system capacity (MAXSC). And also,

we don’t allow to migrate a failed/down VM.

Therefore, a VM in down state PVMdn is not

migrated and not recovered as long as the

underlying layer is in down state PVMUdn.

Rule 1(LLO): A VM is migrated to a VSS if the

number of VMs that currently exist in the VSS is

the least among the VSSs in the VSN.

Rule 2 (MAXC): A VM is migrated to a VSS if

the number of VMs that currently exist in the VSS

is still less than the capacity (C) of the VSS to host.

Rule 3 (MAXSC): A VM is migrated inward

to a VSN if the number of VMs that currently exist

in the VSN is still less than the total capacity (TC)

of the VSN to host. A VM is migrated outward of

a VSN if the number of VMs that currently exist in

the VSN is larger than the total capacity (TC) of

the VSN to host.

The LLO rule is applied to guarantee the load

balancing strategy in term of the amount of VMs

residing on each VSS. We here neglect the

workload assigned to each VM as mentioned in

VSS architecture. The MAXC and MAXSC rules

are applied to guarantee the safety of computing

operation in which there is no overload VSS or

VSN. This is a critical requirement to not violate

SLA and other commercial agreements.

To incorporate these three rules of VM

migration in the SRN model of the VSN, we use a

place (PVMmig) as the temporary central for

migration (see Figure 3). The current running

VMs in a VSS are marked to be migrated from

upstate PVMup if the underlying layer is in

downstate PVMUdn. All the tokens in PVMup are

removed and deposited immediately in PVMmig

by triggering the according immediate transition

tVMmig. Here the rules 1 and 2 are applied to

decide where to migrate a VM. If VSSj satisfies

the rules, a VM in PVMmig is migrated to

PVMjup through the transition TVMjmstart. On

the other side, the migration between VSNs in a

data center is incorporated by the transition

TVMmin and tVMout. TVMin is enabled to

migrate a VM from another VSN to the current

VSN of interest if the rule MAXSC is satisfied

(i.e. the current VSN is capable to host not only

its own VM but also more VM from other VSNs

in data center). In an opposite way, a VM is

migrated outward of the current VSN of interest

as tVMmout is triggered if the rule MAXSC is

satisfied, i.e. the current VSN is not capable to

host all the migration-waiting VMs. These

migration operations are stopped as long as the

rule MAXSC is violated.

 A typical dependence between VMs in a VSS

called place dependence is also incorporated in

this model. The failure rate of TVMdn is varied

upon the number of VMs running in PVMup in

the VSS. We denote this dependency by putting a

“#” sign next to the respective TVMdn.

All the dynamic behaviors described in

Section 4 are controlled by guard functions. Table

1 shows the definition of guard functions attached

to respective transitions. The guard functions

gTVMmstart, gTVMmin, gtVMout are designed

to protect the three rules of VM migration. All the

timed transitions in the SRN model are assumed

to conform exponential distribution.

Table 1. Guard function definition
Guard Transition Definition

gtVMmig

tVM1mig,
tVM2mig,

tVM3mig,

tVM4mig

if(#PVMU1up==0) 1 else 0;

gTVMenable

TVM1dn,

TVM2dn,

TVM3dn,

TVM4dn,

TVM1recov,

TVM2recov,

TVM3recov,

TVM4recov

if(#PVMU1up==1) 1else 0;

gTVMmstart

TVM1mstart,

TVM2mstart,

TVM3mstart,
TVM4mstart

if(#PVM1up==1&&fVM1()<=fVM2()&&fVM1()

<=fVM3()&&fVM1()<=fVM4()) 1 else 0;

if(#PVM2up==1&&fVM2()<=fVM1()&&fVM2()

<=fVM3()&&fVM2()<=fVM4()) 1 else 0;

if(#PVM3up==1&&fVM3()<=fVM1()&&fVM3()
<=fVM2()&&fVM3()<=fVM4()) 1 else 0;

if(#PVM4up==1&&fVM4()<=fVM1()&&fVM4()

<=fVM2()&&fVM4()<=fVM3()) 1 else 0;

gTVMmin TVMmin

if(#PVMU1up==1)

{mVM=mVM+fVM1();cVM=cVM+C;}

if(#PVMU2up==1)

{mVM=mVM+fVM2();cVM=cVM+C;}

if(#PVMU3up==1)

{mVM=mVM+fVM3();cVM=cVM+C;}

if(#PVMU4up==1)

{mVM=mVM+fVM4();cVM=cVM+C;}

mVM=mVM+#PVMmig;

if(mVM<cVM) 1 else 0;

gtVMmout tVMmout if(gTVMmin()) 1 else 0;

fVM1 return(#PVM1up+#PVM1dn);

fVM2 return(#PVM2up+#PVM2dn);

fVM3 return(#PVM3up+#PVM3dn);

fVM4 return(#PVM4up+#PVM4dn);

5. Numerical Results

We evaluate the proposed network based on

the numerical analysis of the SRN model

described in section 4. The default value of

parameters are assigned as in Table 2. The values

nVM

PVM1up

PVM1dn
TVM1dn

TVM1recov

1

PVMU1up

PVMU1dn

TVMU1dnTVMU1recov

nVM

PVM2up

PVM2dn

TVM2dn

TVM2recov

1

PVMU2up

PVMU2dn

TVMU2dn TVMU2recov

nVM

PVM3up

PVM3dn

TVM3dn
TVM3recov

1

PVMU3up

PVMU3dn

TVMU3dnTVMU3recov

nVM

PVM4up

PVM4dn

TVM4dnTVM4recov

1

PVMU4up

PVMU4dn

TVMU4dn TVMU4recov

PVMmig

TVM1mstart TVM2mstart

TVM4mstartTVM3mstart

tVM3mig tVM4mig

tVM1mig tVM2mig

TVMmin

tVMmout

PVM1dn

#

#

#

Figure 3. Stochastic Reward Net Model of a VSN

are extracted from literature review [14][3] and

assumptions. We assume that there is one VM

running and one vacancy for migration-requested

VM on each PS. Therefore, each VSS has totally

two running VMs and volume capacity is able to

host maximum four VMs at the same time.

Table 2. Default parameter values

Parameters

Name
Transitions Description

Mean

time

λvmu

TVMU1dn

TVMU2dn

TVMU3dn

TVMU4dn

VM

underlying
failure rate

2654

hours

µvmu

TVMU1recov

TVMU2recov

TVMU3recov
TVMU4recov

VM
underlying

recovery rate

75

hours

λvm

TVM1dn

TVM2dn

TVM3dn
TVM4dn

VM failure

rate

218

hours

µvm

TVM1recov

TVM2recov
TVM3recov

TVM4recov

VM recovery
rate

65 mins

βvm

TVM1mstart

TVM2mstart
TVM3mstart

TVM4mstart

VM

migration

rate

30
seconds

βmin TVMmin VM deposit 7 days

nVM x VM amount 2

C x VM capacity 4

We first analyze the ssavail and downtime

measures of the system under given default

parameter values. To reflect the advancement of

the current system, we compare it with the non-

networked single VSS. The results shown in Table

3 pinpoints that networking incorporated with live

VM migration enhances remarkably the

availability and reduces significantly the

downtime of system compared to those of the case

without networking and migration.

We extend our analysis by computing the

output measures to observe the migration

operations inside the VSN. Table 4 shows the

number of migration occurring in a year and the

utilization within a year for migration. This could

be a good reference as we enlarge the system

architecture.

Table 3. Availability analyses of VSN under given default

parameter values

 With

networking and

migration

Without

networking and

migration

Steady-state

availability
0.999994408913 0.972069595425

Downtime in

minutes per

year

2.9386753272 14680.22064462

Table 4. Output analyses of VMs migration

Output measures Value

Migration transaction per year 45.3629

Migration utilization in minutes per year 5.67

In order to determine the factors that are most

influential on the availability of system, we

conduct sensitivity analysis of ssavail with respect

to different variables. We observe the influence of

mean time to VM failure (MTTF of VM), mean

time to VMU failure (MTTF of VMU) and mean

time to VM migration (MTTM) on the ssavail.

The procedure is as follows: first, we fix all

default parameter values as in Table 2; after that

we vary sequentially the value of observed

variables and eventually we compute the output

measure of ssavail. The results are shown in

Figure 4. The variations of MTTF of VM and

MTTF of VMU influence the ssavail of system in

opposite trends. The ssavail of system drops down

as the MTTF of VM increases whereas the ssavail

of system leaps up as the MTTF of VMU

increases. This finding challenges system

developers to enhance the stability and long-held

quality of VM underlying layers including

hardware system and VMM software system. The

MTTM is observed to impact the ssavail of system

in monotonic tendency. The ssavail decreases

linearly according to the increase of MTTM. This

finding confirms the sense that the longer the VM

migration operation takes, the less of the ssavail

the system earns. This demands system

developers to incorporate more efficient

migration techniques. [15]–[19].

(a)

(b)

(c)

Figure 4. Steady-state availabilities of VSN with

respect to variables

(a) Mean time to VM failure; (b) Mean time to VMM

failure; (c) Mean time to VM migration

6. Conclusion

This paper contributes a network approach of

virtualized servers incorporated with VM live

migration. This could be considered as a

preliminary research on the networking of servers

in a data center toward the construction of the

whole virtualized architecture of a data center.

Furthermore, this research opens a broad venue of

research on virtualization technology in a data

center. A recursive modeling based on this

research could be a proper way for future works

to deal with a virtualized data center with a large

number of servers.

Appendix. Stochastic Reward Net

Stochastic Reward Net (SRN) is used in

sufficiently modeling many hardware and

software structures of real-time computing

systems [20]. To build SRN model we use three

main components: places, transitions and arcs.

Arcs only connect place(s) to transition(s), and

transition(s) to places. There is an integer number

of entities named token denoted by dot sign or

integer number in the places. Transition can be

enabled to transport tokens from and to places

called firing. The state or condition of the system

is decided by location of tokens [21], [22]. That

means, a set of current location of tokens in SRN

models reflects the state or condition of the

system, called marking. Guard is a Boolean

condition attached to each transition to perform

marking-dependence. To succinctly describe

many complex behaviors, marking-dependent

firing rates of transitions are applied as a function

of the current marking. This dependency is

denoted by “#” sign next to the transition. More

general dependencies are often needed and hence

allowed in the SRN formalism [23]. There are

other features such as input arcs; inhibit arcs,

multiplicities, so that SRN models can be

simplified. Stochastic Petri Net Package (SPNP)

is a versatile modeling tool for performance,

dependability and perform-ability analysis of

complex systems [8]. It was developed by Duke

University. SRN models are solved by efficient

and numerically stable algorithms. Input language

is CSPL (C based SPN language). CSPL is a C file

so it is compiled by using a C compiler and linked

with precompiled files which constitute SPNP.

Moreover, it contains GUI environment using

Java [24].

0 100 200 300 400 500 600 700 800 900 1000
0.9999940

0.999994

0.9999946

0.9999948

0.999995

0.9999952

0.9999954

Mean time to VM failure (hours)

S
te

a
d
y
-s

ta
te

 A
v
a
ila

b
ili

ty

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mean time to VMU failure (hours)

S
te

a
d
y
 s

ta
te

 a
v
a
ila

b
ili

ty

5 10 15 20 25 30 35 40 45 50 55 60
0.9999944080

0.9999944082

0.9999944084

0.9999944086

0.9999944088

0.9999944090

Mean time to VM migration (seconds)

S
te

a
d
y
 s

ta
te

 a
v
a
ila

b
ili

ty

References
[1] P. Patel, A. Ranabahu, and A. Sheth, Service Level

Agreement in Cloud Computing. 2009.
[2] L. Han and J. Xu, “Availability Models for

Virtualized Systems with Rejuvenation,” J. Comput.

Inf. Syst., vol. 20, pp. 8389–8396, 2013.
[3] D. S. Kim, K. S. Trivedi, and F. Machida,

“Availability Modeling and Analysis of a

Virtualized System,” in 2009 15th IEEE Pacific Rim
International Symposium on Dependable

Computing, 2009, vol. 1, pp. 365–371.

[4] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling

and analysis of software rejuvenation in a server

virtualized system with live VM migration,”

Perform. Eval., vol. 70, no. 3, pp. 212–230, Mar.
2013.

[5] F. Machida, D. S. Kim, J. S. Park, and K. S. Trivedi,

“Toward optimal virtual machine placement and
rejuvenation scheduling in a virtualized data center,”

in 2008 IEEE International Conference on Software

Reliability Engineering Workshops (ISSRE Wksp),
2008, pp. 1–3.

[6] F. Machida, J. Xiang, K. Tadano, and Y. Maeno,

“Combined Server Rejuvenation in a Virtualized
Data Center,” 2012 9th Int. Conf. Ubiquitous Intell.

Comput. 9th Int. Conf. Auton. Trust. Comput., pp.

486–493, Sep. 2012.

[7] B. Wei, C. Lin, and X. Kong, “Dependability

Modeling and Analysis for the Virtual Data Center

of Cloud Computing,” 2011 IEEE Int. Conf. High
Perform. Comput. Commun., pp. 784–789, Sep.

2011.

[8] G. Ciardo, J. Muppala, K. Trivedi, and K. T.
Gianfranco Ciardo, “SPNP: stochastic Petri net

package,” in Proceedings of the Third International

Workshop on Petri Nets and Performance Models,
PNPM89, 1989, pp. 142–151.

[9] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling
and analysis of software rejuvenation in a server

virtualized system,” in 2010 IEEE Second

International Workshop on Software Aging and

Rejuvenation, 2010, pp. 1–6.

[10] A. Rezaei and M. Sharifi, “Rejuvenating High

Available Virtualized Systems,” 2010 Int. Conf.
Availability, Reliab. Secur., pp. 289–294, Feb. 2010.

[11] K. Ye, D. Huang, X. Jiang, H. Chen, and S. Wu,

“Virtual Machine Based Energy-Efficient Data
Center Architecture for Cloud Computing: A

Performance Perspective,” in 2010 IEEE/ACM Int’l

Conference on Green Computing and
Communications & Int'l Conference on Cyber,

Physical and Social Computing, 2010, pp. 171–178.

[12] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and
M. Scarpa, “Workload-Based Software

Rejuvenation in Cloud Systems,” IEEE Trans.

Comput., vol. 62, no. 6, pp. 1072–1085, Jun. 2013.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A

scalable, commodity data center network

architecture,” ACM SIGCOMM Comput. Commun.
Rev., vol. 38, no. 4, p. 63, Oct. 2008.

[14] T. A. Nguyen, D. S. Kim, and J. S. Park,
“Availability Modeling and Analysis of a

Virtualized Servers System.” Seoul, Korea, 2014.

[15] Yingwei Luo, Binbin Zhang, Xiaolin Wang, Zhenlin
Wang, Yifeng Sun, and Haogang Chen, “Live and

incremental whole-system migration of virtual

machines using block-bitmap.” pp. 99–106, 2008.
[16] E. Harney, S. Goasguen, J. Martin, M. Murphy, and

M. Westall, “The Efficacy of Live Virtual Machine

Migrations Over the Internet.” pp. 1–7, 2007.
[17] U. Deshpande, B. Schlinker, E. Adler, and K.

Gopalan, “Gang Migration of Virtual Machines

Using Cluster-wide Deduplication,” in 2013 13th

IEEE/ACM International Symposium on Cluster,

Cloud, and Grid Computing, 2013, pp. 394–401.

[18] S. Kumar Bose, S. Brock, R. Skeoch, N. Shaikh, and
S. Rao, “Optimizing live migration of virtual

machines across wide area networks using

integrated replication and scheduling,” in 2011
IEEE International Systems Conference, 2011, pp.

97–102.

[19] Zhiyong Yang, Chunlin Li, A.-G. Yun, and Chang
Liu, “A New Trigger Strategy Based on Live

Migration of the Virtual Machine.” pp. 677–680,

2012.
[20] C. Constanti, D. Jtiiversity, C. Constazltinescu, and

K. Trivedi, “A stochastic reward net model for

dependability analysis of real-time computing

systems,” Proc. 2nd IEEE Work. Real-Time Appl.,

pp. 142–146, 1994.

[21] B. Randell and J. Xu, Software Fault Tolerance.
John Wiley, 1995.

[22] R. Sahner, K. S. Trivedi, and A. Puliafito,

“Performance And Reliability Analysis Of
Computer Systems (an Example-based Approach

Using The Sharpe Software,” IEEE Trans. Reliab.,

vol. 46, no. 3, pp. 441–441, Sep. 1997.
[23] K. S. Trivedi, Probability and Statistics with

Reliability, Queueing, and Computer Science

Applications, 2nd Edition. Wiley-Interscience, 2001,
p. 830.

[24] K. S. Trivedi, “SPNP User ’ s Manual,” Options, no.

919, 1999.

