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Abstract 

Virtualization has been considered as an 

inventive approach for modern information 

systems in the revolutions of cloud computing and 

big data. Virtualized systems have been taken into 

account in research in different granularities. In 

the trend of research on virtualized systems, this 

paper presents a new approach of virtualization 

in a data center. Our work aims to propose a 

network of virtualized servers incorporated with 

live VM migration to guarantee the localization of 

fault-tolerance. In order to maximize resource 

utilization and system availability, we introduce 

three rules of live VM migration inside the 

network. The proposed network system is modeled 

by Stochastic Reward Net (SRN) and analyzed by 

Stochastic Petri Net Package (SPNP). As an 

important measure of interest, system availability 

is our scope of analysis. The analysis results show 

new findings that are only revealed in a network 

view. Networking incorporated with live VM 

migration enhances remarkably system 

availability. Based on the analyses, we challenge 

the system developers to pay more attention on the 

core points of system.   

1. Introduction 

Industry sector is accelerating the adoption of 

virtualization technology to reduce the burden of 

IT infrastructure costs in data centers and 

information systems. A strict requirement in 

design and administration of a data center from 

commercial side is always considered as a 

prerequisite conforming the service level 

agreements (SLAs) [1]. As a term in each SLA, 

availability is usually an important measure of 

interest to maintain proper services. In order to 

deploy and maintain 24/7 applications and 

services in data centers, virtualized computing 

platforms have been emerging as one of 

appropriate solutions. As the core of the 

virtualized computing systems, virtual machine 

monitor (VMM) (also known as hypervisor) with 

the features of transparency, isolation, 

encapsulation and manageability makes 

computing systems with better scalability, 

migration and server consolidation [2]. Thanks to 

virtualization solution on hardware resources in 

physical systems, different and multiple 

computing environments called virtual machines 

(VMs) are created and fostered to maintain the 

flexibility and competency of long-life and large-

scale applications. On each VM, system designers 

can launch required operating systems (OSs) 

which in turn allow multiple applications (Apps) 

running. Virtualization has been adopted into 

different levels of computing system including 

storage virtualization, network virtualization, 

client virtualization and server virtualization. Kim 

et al. [3] initiated the research trend on virtualized 

system. Machida et al. in work [5] proposed the 

configuration of a data center adopting 

virtualization called virtualized data center 

(VDC). Wei et al. [7]  built a stochastic petri net 

(SPN) model for a typical architecture of a VDC 

regarding task circulation and workload. In this 

paper, we propose a network of virtualized 



servers. We call this network as a virtualized 

servers network (VSN). We introduce a 

virtualized servers system (VSS) in which two 

virtualized servers are combined together as a 

single node in the network. We construct the 

stochastic reward net (SRN) model of the whole 

network and analyze the availability and related 

measures of interest using Stochastic Petri Net 

Package (SPNP) [8]. We come up with new 

findings that challenge the system developers to 

incorporate more effective techniques to 

migration and concern more on the VM 

underlying layers including hardware layer and 

VMM layer to gain more system availability. 

The rest of this paper is organized as follows. 

In Section 2, related work is introduced. Section 3 

presents system architectures including VSS and 

VSN. The construction of analytical SRN model 

of VSN is described in Section 4. The numerical 

results of different output measures of interest are 

shown in Section 5. Section 6 concludes the paper 

with contribution and future work.  

2. Related Work 

Machida et al. [5], [6] proposed the oriental 

ideas of virtualization on data centers. At first, the 

work [5] initiated the research trend by discussing 

the issues of perform-ability management in a 

data center incorporated server virtualization and 

software rejuvenation, which is called virtualized 

data center (VDC). Furthermore, the work [6] 

proposed a combined server rejuvenation 

technique in which both VMM and VM 

rejuvenations are simultaneously performed. A 

well-organized live VM migration regarding the 

above rejuvenation scheduling technique is 

introduced. In a more detail view, Kim et al. [3] 

studied a virtualized system by using continuous 

time Markov chain (CTMC) models to analyze 

the availability of a particular virtualized system 

regarding hardware layer and virtualized layer. 

Machida et al. [9] focused on analysis of 

virtualized layers with the incorporation of 

rejuvenation for both VMMs and VMs. In work 

[4], the authors extended the above study by 

incorporating VM live migration. Rezaei et al. 

[10] combined time-based rejuvenation policy for 

VMM layer and prediction-based policy for VMs 

layer. Han et al. [2] considered another aspect of 

the research trend in which a workload-based 

rejuvenation is integrated. Wei et al. [7]  built a 

stochastic petri net (SPN) model for a typical 

architecture of a VDC regarding task circulation 

and workload. The common lack of contemporary 

researches is either focusing on a single 

virtualized server in very detail or trying to build 

a general analysis model for the whole data center 

without considering thoroughly the interaction 

between nodes in the network of servers in a data 

center. Most of researches try to improve system 

availability by incorporating different 

rejuvenation strategies. Live VM migration is 

implemented in an ambiguous connection of two 

servers without explicit description. Most work 

focused on single or two hosts virtualized system. 

It is necessary to model and analyze the 

availability of virtualized system consisting 

multiple hosts. In this work, we scale up the scope 

of a single virtualized system and scale down the 

scope of a virtualized data center to study a typical 

configuration of servers in a network view. We 
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focus on the migration activity between nodes in 

the network. Moreover, taking the advantage of 

the flexibility of a set of guard function in 

Stochastic Reward Net (SRN) facilitates us to 

capture dynamic behaviors of the system in very 

detail. 

3. System Architecture  

We here present a single virtualized servers 

system, then we extend the system in a typical 

network topology.  

3.1. Virtualized Servers System 

The architecture of a VSS with multiple-

virtual machines is depicted in Figure 1. The 

proposed virtualized system consists of two 

virtualized servers, Virtualized Server 1(VS1) and 

Virtualized Server 2 (VS2). Each of VSs has 

identical internal structure composed of a physical 

server computer called Host (H or PS), a virtual 

machine monitor (VMM), one upper virtual 

machines (VMs), an operating system (OS) on 

VM, and multiple applications/services (Apps). A 

Host holds the role of a physical underlying 

hardware platform which allows other upper 

software subsystems to run on. Likewise, a VMM, 

as a host program running on a Host, enables the 

physical computer to support multiple, identical 

execution environments to guest OSs. And similar 

to a physical computer, a VM consists of an OS 

which in turn serves as a host program to multiple 

Apps running on top of it. All the Apps are in 

charge of processing incoming requests. 

Nevertheless, in the scope of this paper, we 

disregard the involvement of OS and Apps in the 

modeling and analysis. And we neglect the 

workload effects [11], [12] which are not 

dominant in our research on the system 

evaluation. We therefore denote the OS and Apps 

elements same in both virtualized servers to 

indicate that workloads are not different. 

Furthermore, we incorporate a storage area 

network (SAN) interconnected to the both servers. 

SAN enables the storage system to appear as a 

local memory (iVM) associated with the VMs in 

virtualized servers.  

3.2. Virtualized Servers Network 

Based on the abovementioned VSS, we extend 

the isolated architecture of VSS by constructing a 

network of VSSs (see Figure 2) conforming 3-

level Fat Tree topology [13] with n=4 (n means 

the number of ports on the switches). The network 

topology enables VSSs to connect efficiently to 

each other. We choose a typical configuration 

called Virtualized Servers Network (VSN). A 

VSN consists of eight PSs in four VSSs. 

Currently, we focus on the network behaviors of 

VSSs hence we neglect the role of networking 

devices in our modeling and analysis. And we 

assume that the migration malfunctions are not 

taken into account in our modeling. This point 

could be an extension in future works.  

4. Stochastic Reward Net Model 

The SRN model of VSN is shown in Figure 3. 

The model looks symmetrical so we neglect the 

index in notations in the following description to 

shorten model explanation unless it is necessary 

to mention clearly. For the sake of network 
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Figure 2. 3-level Fat Tree Topology of a Virtualized Servers Network 



analysis, we compact a complicated VSS model 

by using two-state model formulation. A SRN 

model of a VSS now consists of VM model and 

VM underlying layer (VMU) model. The dynamic 

behaviors of both layers are simply modeled as in 

a couple of up state and down state depicted as 

places (PVMup, PVMdown) and (PVMUup, 

PVMUdn). Initially, there are a specific number 

of VMs (nVM) running on the virtualized 

environment in each VSS. A VM is in upstate 

(PVMup) if it is running in normal state or failure-

probable state. And a VM is in down state if it is 

in failure state, rejuvenated state or down-

dependent state (i.e. VM is down because of the 

underlying layers). As soon as a VM falls into 

down state because of diverse causes including 

VM failure, VM/VMM rejuvenation, SAN 

failure; the transition TVMdn is enabled to 

remove a token in PVMup and deposit to PVMdn. 

The VM in down state can return to up state 

through the transition TVMrecov by recovery 

measures. On the other side, we squeeze the 

underlying layer of VMs in a VSS by assigning 

one token in the VMU model. Similar to VM 

model, the VMU is considered at first in normal 

state (PVMUup). The operation state of VMU is 

switched to down state if any of down causes 

occurs such as all VMMs are in 

failure/rejuvenation/down states or all PSs are in 

failure. The rate of the transitions TVMUdn, 

TVMUrecov, TVMdn and TVMrecov can be 

assigned by the values of mean time to failure 

equivalent (MTTFeq) and mean time to recover 

equivalent (MTTReq) computed in the work [14]. 

However, in this paper we consider these 

parameters as adjusted variables to observe the 

dependence of steady state availability (ssavail) of 

the whole system. We denote the ordering number 

(1-4) in the place and transition names to indicate 

those of the respective VSS. Now we construct the 

connection between VSSs to support VM live 

migration. The migration of VMs within VSN is 

incorporated regarding the rule of least-load 

optimization (LLO) and the rule of maximum 

capacity (MAXC). The migration of VMs 

between VSNs in a VDC is conformed the rule of 

maximum system capacity (MAXSC). And also, 

we don’t allow to migrate a failed/down VM. 

Therefore, a VM in down state PVMdn is not 

migrated and not recovered as long as the 

underlying layer is in down state PVMUdn. 

Rule 1(LLO): A VM is migrated to a VSS if the 

number of VMs that currently exist in the VSS is 

the least among the VSSs in the VSN. 

Rule 2 (MAXC): A VM is migrated to a VSS if 

the number of VMs that currently exist in the VSS 

is still less than the capacity (C) of the VSS to host. 

Rule 3 (MAXSC): A VM is migrated inward 

to a VSN if the number of VMs that currently exist 

in the VSN is still less than the total capacity (TC) 

of the VSN to host. A VM is migrated outward of 

a VSN if the number of VMs that currently exist in 

the VSN is larger than the total capacity (TC) of 

the VSN to host.  

The LLO rule is applied to guarantee the load 

balancing strategy in term of the amount of VMs 

residing on each VSS. We here neglect the 

workload assigned to each VM as mentioned in 

VSS architecture. The MAXC and MAXSC rules 

are applied to guarantee the safety of computing 

operation in which there is no overload VSS or 

VSN. This is a critical requirement to not violate 

SLA and other commercial agreements. 

To incorporate these three rules of VM 

migration in the SRN model of the VSN, we use a 

place (PVMmig) as the temporary central for 

migration (see Figure 3). The current running 

VMs in a VSS are marked to be migrated from 

upstate PVMup if the underlying layer is in 

downstate PVMUdn. All the tokens in PVMup are 

removed and deposited immediately in PVMmig 

by triggering the according immediate transition 

tVMmig. Here the rules 1 and 2 are applied to 

decide where to migrate a VM. If VSSj satisfies 

the rules, a VM in PVMmig is migrated to 



PVMjup through the transition TVMjmstart. On 

the other side, the migration between VSNs in a 

data center is incorporated by the transition 

TVMmin and tVMout. TVMin is enabled to 

migrate a VM from another VSN to the current 

VSN of interest if the rule MAXSC is satisfied 

(i.e. the current VSN is capable to host not only 

its own VM but also more VM from other VSNs 

in data center). In an opposite way, a VM is 

migrated outward of the current VSN of interest 

as tVMmout is triggered if the rule MAXSC is 

satisfied, i.e. the current VSN is not capable to 

host all the migration-waiting VMs. These 

migration operations are stopped as long as the 

rule MAXSC is violated.   

 A typical dependence between VMs in a VSS 

called place dependence is also incorporated in 

this model. The failure rate of TVMdn is varied 

upon the number of VMs running in PVMup in 

the VSS. We denote this dependency by putting a 

“#” sign next to the respective TVMdn.  

All the dynamic behaviors described in 

Section 4 are controlled by guard functions. Table 

1 shows the definition of guard functions attached 

to respective transitions. The guard functions 

gTVMmstart, gTVMmin, gtVMout are designed 

to protect the three rules of VM migration. All the 

timed transitions in the SRN model are assumed 

to conform exponential distribution.  

Table 1. Guard function definition 
Guard Transition Definition 

gtVMmig 

tVM1mig,  
tVM2mig,  

tVM3mig, 

tVM4mig 

if(#PVMU1up==0) 1 else 0; 

gTVMenable 

TVM1dn, 

TVM2dn, 

TVM3dn, 

TVM4dn, 

TVM1recov, 

TVM2recov, 

TVM3recov,  

TVM4recov  

if(#PVMU1up==1) 1else 0; 

gTVMmstart 

TVM1mstart, 

TVM2mstart, 

TVM3mstart, 
TVM4mstart 

if(#PVM1up==1&&fVM1()<=fVM2()&&fVM1()

<=fVM3()&&fVM1()<=fVM4()) 1 else 0; 

if(#PVM2up==1&&fVM2()<=fVM1()&&fVM2()

<=fVM3()&&fVM2()<=fVM4()) 1 else 0; 

if(#PVM3up==1&&fVM3()<=fVM1()&&fVM3()
<=fVM2()&&fVM3()<=fVM4()) 1 else 0; 

if(#PVM4up==1&&fVM4()<=fVM1()&&fVM4()

<=fVM2()&&fVM4()<=fVM3()) 1 else 0; 

gTVMmin TVMmin 

if(#PVMU1up==1) 

{mVM=mVM+fVM1();cVM=cVM+C;} 

if(#PVMU2up==1) 

{mVM=mVM+fVM2();cVM=cVM+C;} 

if(#PVMU3up==1) 

{mVM=mVM+fVM3();cVM=cVM+C;} 

if(#PVMU4up==1) 

{mVM=mVM+fVM4();cVM=cVM+C;} 

mVM=mVM+#PVMmig; 

if(mVM<cVM) 1 else 0; 

gtVMmout tVMmout if(gTVMmin()) 1 else 0; 

fVM1  return(#PVM1up+#PVM1dn); 

fVM2  return(#PVM2up+#PVM2dn); 

fVM3  return(#PVM3up+#PVM3dn); 

fVM4  return(#PVM4up+#PVM4dn); 

5. Numerical Results 

We evaluate the proposed network based on 

the numerical analysis of the SRN model 

described in section 4. The default value of 

parameters are assigned as in Table 2. The values 
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Figure 3. Stochastic Reward Net Model of a VSN 

 



are extracted from literature review [14][3] and 

assumptions. We assume that there is one VM 

running and one vacancy for migration-requested 

VM on each PS. Therefore, each VSS has totally 

two running VMs and volume capacity is able to 

host maximum four VMs at the same time. 

Table 2. Default parameter values 

Parameters 

Name 
Transitions Description 

Mean 

time 

λvmu 

TVMU1dn 

TVMU2dn 

TVMU3dn 

TVMU4dn 

VM 

underlying 
failure rate 

2654 

hours 

µvmu 

TVMU1recov 

TVMU2recov 

TVMU3recov 
TVMU4recov 

VM 
underlying 

recovery rate 

75 

hours 

λvm 

TVM1dn 

TVM2dn 

TVM3dn 
TVM4dn 

VM failure 

rate 

218 

hours 

µvm 

TVM1recov 

TVM2recov 
TVM3recov 

TVM4recov 

VM recovery 
rate 

65 mins 

βvm 

TVM1mstart 

TVM2mstart 
TVM3mstart 

TVM4mstart 

VM 

migration 

rate 

30 
seconds 

βmin TVMmin VM deposit 7 days 

nVM x VM amount 2 

C x VM capacity 4 

We first analyze the ssavail and downtime 

measures of the system under given default 

parameter values. To reflect the advancement of 

the current system, we compare it with the non-

networked single VSS. The results shown in Table 

3 pinpoints that networking incorporated with live 

VM migration enhances remarkably the 

availability and reduces significantly the 

downtime of system compared to those of the case 

without networking and migration.  

We extend our analysis by computing the 

output measures to observe the migration 

operations inside the VSN. Table 4 shows the 

number of migration occurring in a year and the 

utilization within a year for migration. This could 

be a good reference as we enlarge the system 

architecture. 

Table 3. Availability analyses of VSN under given default 

parameter values 

 With 

networking and 

migration 

Without 

networking and 

migration 

Steady-state 

availability 
0.999994408913 0.972069595425 

Downtime in 

minutes per 

year 

2.9386753272 14680.22064462 

Table 4. Output analyses of VMs migration 

Output measures Value 

Migration transaction per year 45.3629 

Migration utilization in minutes per year 5.67 

In order to determine the factors that are most 

influential on the availability of system, we 

conduct sensitivity analysis of ssavail with respect 

to different variables. We observe the influence of 

mean time to VM failure (MTTF of VM), mean 

time to VMU failure (MTTF of VMU) and mean 

time to VM migration (MTTM) on the ssavail. 

The procedure is as follows: first, we fix all 

default parameter values as in Table 2; after that 

we vary sequentially the value of observed 

variables and eventually we compute the output 

measure of ssavail. The results are shown in 

Figure 4. The variations of MTTF of VM and 

MTTF of VMU influence the ssavail of system in 

opposite trends. The ssavail of system drops down 

as the MTTF of VM increases whereas the ssavail 

of system leaps up as the MTTF of VMU 

increases. This finding challenges system 

developers to enhance the stability and long-held 

quality of VM underlying layers including 

hardware system and VMM software system. The 

MTTM is observed to impact the ssavail of system 

in monotonic tendency. The ssavail decreases 

linearly according to the increase of MTTM. This 

finding confirms the sense that the longer the VM 

migration operation takes, the less of the ssavail 

the system earns. This demands system 

developers to incorporate more efficient 

migration techniques. [15]–[19].  



 
(a) 

 
(b) 

 
(c) 

Figure 4. Steady-state availabilities of VSN with 

respect to variables 

(a) Mean time to VM failure; (b) Mean time to VMM 

failure; (c) Mean time to VM migration 

6. Conclusion 

This paper contributes a network approach of 

virtualized servers incorporated with VM live 

migration. This could be considered as a 

preliminary research on the networking of servers 

in a data center toward the construction of the 

whole virtualized architecture of a data center. 

Furthermore, this research opens a broad venue of 

research on virtualization technology in a data 

center. A recursive modeling based on this 

research could be a proper way for future works 

to deal with a virtualized data center with a large 

number of servers.  

Appendix. Stochastic Reward Net 

Stochastic Reward Net (SRN) is used in 

sufficiently modeling many hardware and 

software structures of real-time computing 

systems [20]. To build SRN model we use three 

main components: places, transitions and arcs. 

Arcs only connect place(s) to transition(s), and 

transition(s) to places. There is an integer number 

of entities named token denoted by dot sign or 

integer number in the places. Transition can be 

enabled to transport tokens from and to places 

called firing. The state or condition of the system 

is decided by location of tokens [21], [22]. That 

means, a set of current location of tokens in SRN 

models reflects the state or condition of the 

system, called marking. Guard is a Boolean 

condition attached to each transition to perform 

marking-dependence. To succinctly describe 

many complex behaviors, marking-dependent 

firing rates of transitions are applied as a function 

of the current marking. This dependency is 

denoted by “#” sign next to the transition. More 

general dependencies are often needed and hence 

allowed in the SRN formalism [23]. There are 

other features such as input arcs; inhibit arcs, 

multiplicities, so that SRN models can be 

simplified. Stochastic Petri Net Package (SPNP) 

is a versatile modeling tool for performance, 

dependability and perform-ability analysis of 

complex systems [8]. It was developed by Duke 

University. SRN models are solved by efficient 

and numerically stable algorithms. Input language 

is CSPL (C based SPN language). CSPL is a C file 

so it is compiled by using a C compiler and linked 

with precompiled files which constitute SPNP. 

Moreover, it contains GUI environment using 

Java [24].  
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