
I/O Traffic Management on PC-Cluster based Cloud Storage System

Tin Tin Yee, Thinn Thu Naing

University of Computer Studies, Yangon, Myanmar

tintinyee.tty@gmail.com, thinnthu@gmail.com

Abstract

 Cloud storage system architecture and

design plays a vital role in the cloud computing

infrastructure. Cloud storage system provides

users to efficient storage space with elasticity

feature. One of the challenges of cloud storage

server is difficult to balance the providing huge

elastic capacity of storage and investment of

expensive cost for it. In order to solve this issue,

we propose the low cost PC cluster based

storage system architecture which can be

activated to store a large amount of data and

provide cost-effective for cloud storage user and

present FP-growth algorithm for metadata

prefetching method and Least Recently Used

(LRU) replacement policy for caching to improve

performance by reducing response time.

According to the experimental testing, the

storage can be utilized more than 90% of storage

space and can significantly reduce the average

response time.

1. Introduction

 Nowadays, everyone with a computer

spends a lot of time acquiring data and then

trying to find a way to store it. For some

computer owners, finding enough storage space

to hold all the data they have acquired are a real

challenge. Some people invest in larger hard

drives. Others prefer external storage devices

like thumb drives or compact discs. Desperate

computer owners might delete entire folders

worth of old files in order to make space for new

information. But some are choosing to rely in a

growing trend: cloud storage.

 Cloud storage is a storage service mode

which the service providers supply storage

capacities and data storage services through the

Internet to the clients. Cloud storage has several

advantages over traditional data storage. If the

data store on a cloud storage system, will be able

to get to that data from any location that has the
Internet access. There is no need to carry around

a physical storage device or use the same

computer to save and retrieve the information.

In cloud storage, disk storage is one of the

biggest expenses. There is strong concern that

cloud service providers will drown in the

expense of storing data, especially unstructured

data such as documents, presentations, PDFs,

VM Images, Multimedia data, etc. Cloud service

providers offer huge capacity cost reductions, the

elimination of labor required for storage

management and maintenance and immediate

provisioning of capacity at a very low cost per

terabyte. Therefore, the storage and computing

on massive data are major key challenge for a

cloud computing infrastructure.

The rest of this paper is organized as follows.

Section 2 describes related work. In section 3

discusses physical topology of PC cluster based

cloud storage system. In section 4 describes I/O

traffic management scheme and experimental

environment presents in section 5. Finally,

section 6 is the conclusion and future work.

2. Related Work

Recently, there are many cloud computing

and cloud storage providers, such as IBM,

Google, Microsoft, Amazon, HP, iCloud, etc.

Amazon S3 provides a simple web services

interface that can be used to store and retrieve

any amount of data, at any time, from anywhere

on the cloud. It gives any developer access to the

same highly scalable, reliable, secure, fast,

mailto:tintinyee.tty@gmail.com

inexpensive infrastructure that Amazon uses to

run its own global network of web sites. The

service aims to maximize benefits of scale and to

pass those benefits on to developers. Yong et al.

[1] proposed a storage cluster architecture

CoStore using network attached storage devices.

In CoStore the consistency of a unified file

namespace is collaboratively maintained by all

participating cluster members without any

central file manager and designed the data

anywhere and metadata at fixed locations file

system layout for efficiency and scalability in a

CoStore cluster. Qinlu et al. [3] presented the

idea of P2P model based on cloud storage online

backup prototype system and the prototype

system architecture and topology analysis,

research and development provide a theoretical

basis. Jiyi et al. [5] introduced cloud storage

reference model. This model designed scalable

and easy to manage storage system but aren’t

designed to be high performance. This paper

presented the key technologies, several different

types of clouds services, the advantages and

challenges of cloud storage. Xu et al. [6]

proposed new cloud storage architecture based

on P2P which provide a pure distributed data

storage environment without any central entity.

The cloud based on the proposed architecture is

self-organized and self-managed and as better

scalability and fault tolerance using Distributed

Hash Table approach.

Bo et al. [2] presented hadoop distributed file

system does not perform well for massive file

since huge number of small files imposed heavy

burden on NameNode of HDFS, correlations

between files were not considered for data

placement and no prefetching mechanism was

provided to improve I/O performance. Lin et al.

[4] introduced an Affinity-based Metadata

Prefetching (AMP) scheme is proposed for

metadata servers in large scale distributed

storage system to provide aggressive metadata

prefetching. AMP scheme that applies data

mining techniques to discover and identify the

affinities existing among metadata accesses from

past history and then uses these affinities as hints

to judiciously perform aggressive metadata

prefetching.

In this paper, we propose the low cost PC

cluster based storage system architecture that can

be activated to store a large amount of data and

provide cost-effective for cloud storage user and

FP-growth based metadata prefetching algorithm

to improve the efficient of the I/O traffic for PC

cluster based storage system.

3. Physical Topology of PC Cluster

based Cloud Storage System

 In this section, we describe how to build

physical topology of PC cluster based cloud

storage system. The system framework is shown

in figure 1. The overall framework of PC cluster

based cloud storage system consists of three

layers that are web based application services

layer, Hadoop Distributed File System (HDFS)

layer and PC cluster layer.

 The web based application layer provides

interface for the users whose can store their own

applications such Virtual Machine (VM) images,

dataset and multimedia data, etc. The HDFS

layer supports the file system for PC cluster

layer. The PC cluster layer provides to store

large amount of data.

Figure 1: System Framework of PC Cluster

based Cloud Storage System

DataNode

PC Cluster Layer

Hadoop Distributed File System (HDFS) Layer

NameNode

DataNode …….

Application Layer

VM Image Dataset Multimedia

Data …

3.1 Hadoop Distributed File System

(HDFS)

 The Hadoop Distributed File System (HDFS)

is a distributed, highly fault-tolerant file system

designed for storing very large files with

streaming data access patterns, running on

clusters consisting of low-cost commodity

hardware. A HDFS is divided into two kinds of

nodes operating with a master-slave pattern: a

NameNode and many DataNodes. The

NameNode maintains the file system namespace

including the file system tree and the metadata

for all the files and directories (i.e. block size,

file length, replication, modification time,

ownership, permission information, etc). The

DataNodes store the file measured by “block”

(with the default size being 64MB), which is

much larger than the typical “block” of POSIX

file systems. HDFS breaks a large file into blocks

and stores them across DataNodes. It typically

replicates every block three times on different

DataNodes for fault tolerant. HDFS adopts direct

client access mechanism to achieve high

bandwidth. When clients read file from HDFS,

they interact with NameNode for file metadata

and then perform actual I/O operations directly

with relevant DataNode to retrieve data.

3.2 PC Cluster

Nowadays, many organizations need

terabytes storage systems but are very expensive

and require higher degree of skills for their

operations and maintenance. Usually a desktop

PC contains more than 100 GB Hard Disk Drive

(HDD), at least 256 MB or greater RAM and

2GHz or higher processor. A typically an

operating system installation and other software

installation do not use more than 20 GB of HDD

storage. This leaves on the average about 80% of

the storage space to be used. Therefore, we

proposed PC cluster based storage server that is

inexpensive and easy to maintain.

 PC cluster is a collection of computer nodes,

which is interconnected by a high-speed

switching network, all nodes can be used

individually or collectively as a cluster.

3.2.1 System Overview of PC Cluster based

Cloud Storage System

PC cluster based storage system tries to

transfer from the cluster computing to storage

server. The storage system uses inexpensive PC

components. The large files can be stored by

striping the data across multiple nodes. In PC

cluster consists of one NameNode as server and

many DataNodes as clients. The cluster based

storage system uses HDFS (Hadoop Distributed

File System) to store data in the collection of the

nodes. Each node has its own memory, I/O

devices and operating system. The nodes are

physically separated and connected via a LAN.

 In this system consists of a NameNode and

many DataNodes. NameNode manages the

whole PC cluster and maintains the metadata of

HDFS that contains the information of blocks,

the current locations of blocks, and monitoring

the states of all nodes in the cluster. NameNode

is recorded any changes to the file system

namespace such as opening, closing, renaming

files and directories. It also determines the

mapping of blocks to DataNodes. The

DataNodes store the physical storage of the files.

DataNodes also perform block creation, deletion

and replication upon instruction from the

NameNode. In the system, files are divided into

blocks that are stored as independent units. In PC

cluster, each individual machine of a cluster is

referred to as a node. Our system is based on

client-server architecture and consists of one

server node (NameNode) and many clients

nodes(DataNodes) in order to make them work

as a single machine. NameNode has two

networks cards and one is connected to the

backbone network and the other is connected the

DataNodes using gigabyte switch. All

communication protocols build on the TCP/IP

protocol. HDFS clients connect to a

Transmission Control Protocol (TCP) port

opened on the NameNode, and then

communicate with the NameNode using a

proprietary Remote Procedure Call (RPC)-based

protocol. Data nodes talk to the NameNode using

a proprietary block-based protocol.

 The PC cluster is the use of multiple

computers, typically PCs which was built 1.5

GHz Pentium P4 processors, 80 GB Hard disks

and 512 MB RAM and running with Ubuntu OS.

These PC are connected by a gigabyte switch

that can create illusion of being one machine.

The proposed PC cluster based storage server

utilizes the existing PC machines in our

university without purchasing any extra

hardware and software components. Therefore,

this storage server is very cost effective

architecture.

4. I/O Traffic Management Scheme

for PC Cluster based Cloud Storage

System

 In this section, we propose I/O traffic

management for PC cluster based storage

system.

A. Proposed Method for Metadata Prefetching

and Caching approach

 When cloud users read file from PC cluster

based storage server, they first interact with

NameNode for file metadata and then perform

actual I/O operations directly with relevant

DataNodes to retrieve data. In this case, response

time delay caused by reading from NameNode

that is the major performance bottleneck of

processing user request.

To solve the performance bottleneck, we

propose FP-growth algorithm for metadata

prefetching method and Least Recently Used

(LRU) replacement policy for caching to

improve performance of PC cluster based storage

server for cloud storage. Caching keeps in

memory the data that are the most likely to be

used again while prefetching attempts to bring

data in memory before they are need. Prefetching

is an effective technique for improving file

access performance which can reduce response

time delay for I/O system.

Prefetching for metadata file is critical for the

overall system performance. In our system,

metadata will be prefetched from NameNode’s

historical metadata access records using FP-

growth algorithm. The metadata prefetching

reduces response time on NameNode. The

prefetching and caching process steps are

described as follows:

Step 1: When client read request receives via

web interface, it first look up the file metadata

from cache. If it found, then directly performs

read operation from correspond DataNodes. If it

not found, go to the step 2.

Step 2: The client sends request to the

prefetching module on the NameNode.

Step 3: Prefetching module using FP-growth

algorithm fetches the request metadata file on

NameNode. And then returned to the client and

stored the metadata on client caches.

Step 4: When metadata file insert in cache,

Least-Recently-Used (LRU) replacement policy

manages the metadata cache.

B. FP-growth Algorithm for Metadata

Prefetching

We introduce our data mining based FP-

growth metadata prefetching algorithm. This

algorithm explores deep association from

metadata files. Metadata associations widely

exist in storage systems. The metadata of two or

more files are affined if they are linked together

either spatially or temporally. For example, /tmp

always has a storage spatial association with

/tmp/user, /tmp/user/part1 and /tmp/user/part2. If

we can find out the storage association between

these metadata, we could prefetch all these

metadata files into cache simultaneously. This

can potentially significantly reduce the response

time in storage server.

FP-growth algorithm mine frequent patterns

using FP-tree algorithm to find association rules

from metadata and it adopts a divide-and-

conquer strategy as follows: compress the

metadata representing frequent items into

frequent-pattern tree or FP-tree, but retain the

itemset association information, and then divide

into a set of conditional metadata, each

associated with one frequent item, and mine each

such metadata separately.

Let m ={m1, m2,..., mi} be a set of items in a

metadata, and a transaction in metadata file

M={M1, M2,...,Mn}, where n is the total number

of metadata. The support (or occurrence

frequency) of a pattern A, where A is a set of

items, is the number of transactions containing A

in metadata. The pattern A is frequent if A’s

support is no less than a predefined minimum

support threshold, ξ. Table 1 and 2 list the

summary of notations used in the algorithms.

Table 1. Notations Used in the FP-tree

Algorithm

Notation Description

M The set of metadata

ξ The predefined minimum support

threshold

m The set of frequent items

L The list of frequent items

p The first element of sorted

frequent-item list

P The remaining requent-item list

Figure 2. FP-tree Algorithm

Figure 3. Insert_tree Procedure

Table 2. Notations Used in the FP-growth

Algorithm

Notation Description

P The single prefix-path part

of Tree

β The combination of the

nodes in the path P

The itemset in the Metadata

ai A frequent item in the tree

Figure 4. FP-growth algorithm pseudo-code

C. Least-Recently-Used Replacement Policy for

Caching

Cache is a component that transparently

stores data so that future requests for that data

can be served faster and improve the overall

system performance.

 With LRU, every metadataname in cache has

a time-stamp assigned when inserted or when

found in cache. It selects candidates for removal

at cache finding the oldest files in the cache

using the time-stamp stored in the cache with the

FP-tree Algorithm(M, ξ)

begin

 1. Scan the metadata M.

 2. Collect m, the set of frequent items, and

 the support of each frequent item.

 3. Sort m in support-descending order as L,

 the list of frequent items.

 4. Create the root of an FP-tree, T, and

label it as “null”.

 5. For each transaction Trans in M do

 begin

 6. Select the frequent items in M

 7. Sort them according to the order of L.

 end

 8. [p |P] select from Sorted frequent-item

list

 9. Call insert_tree([p | P], T).

end

FP_growth Algorithm(Tree,

begin

 if (Tree contains a single path P)

 then for each combination of the nodes

 in the path P

 generate pattern with

 support= minimum support of

 nodes in

 else if for each ai in the header of Tree{

 generate pattern = ai with

 support = ai.support

 contruct s conditional pattern

base

 then conditional FP_tree Tree

 if Tree then

 call FP_tree(Tree }

 end if

 end if

 end if

end

Procedure insert_tree([p | P], T)

begin

 if (T has a child N and item-name =

 p.item-name)

 then increment N’s count by 1;

 else create a new node N, with its count

 initialized to 1,its parent link to T
end if

metadataname. The LRU algorithm in pseudo

code as shown in figure 5.

Figure 5: LRU algorithm pseudo code

4.1 Theoretical Analysis

 In this section, the average response time is

considered to analyze in the PC cluster based

storage system. The average response time in a

PC cluster based storage system is defined as

equation 1.

Average response time= H x Accessc + (1-H) x

 Accessd (1)

Where H , Accessc and Accessd are the hit rate of

cache, cache access time and disk access time

respectively. The definition of notations is shown

in table 3.

Table 3. Definition of Notations

Symbols Definition

H Hit rate of cache

Accessc Cache access time

Access Disk access time

Nr Number of request which has

been accessed in metadata

cache

Nt Total number of requests to

the metadata cache

seek time Disk seek time

rotational

delay

Delay time for the request

sector

transfer time Time to transfer a block

control

overhead

Disk controller overhead

The hit rate H= Nr/Nt , where Nr is the number of

request which has been accessed in the metadata

cache and Nt is the total number of requests to

the metadata cache. The hit rate is the accuracy

of the proposed algorithm. The disk access time

Accessd= seek time+ rotational delay + transfer

time+ control overhead, where seek time is the

time taken for a particular track on a storage

disk, rotational delay is the time needed for the

requested sector to rotate under the head, transfer

time is the time takes to transfer a block and

control overhead is the overhead imposed by

disk controller.

 The average response time of proposed

system is analyzed using equation 1 based on the

various hit rate. In this analysis, we assume that

the seek time is 12ms, the transfer time is

0.128ms, the controller overhead is 8ms

rotational delay is 5.56ms and cache access time

is 5ms. The results of analysis are shown in table

4.

Table 4. Analysis Results

H

(%)

Accessc

(ms)

Accessd

(ms)

Average

response

time(ms)

10% 5 25.688 23.6192

20% 5 25.688 20.5504

30% 5 25.688 19.4816

40% 5 25.688 17.4128

50% 5 25.688 15.344

60% 5 25.688 13.2752

70% 5 25.688 11.2064

80% 5 25.688 9.1376

90% 5 25.688 7.0688

100% 5 25.688 5

 According to table 4, the average response

time depends on the hit rate of cache. Therefore,

the proposed algorithm is more accuracy increase

as well as the average response time is also fast.

5. Experimental Environment

The test platform is built on a cluster with

one NameNode and five DataNodes of

commodity computer. All nodes are

interconnected with 1 Gbps Ethernet network. In

each node, Ubuntu server 10.10 with the kernel

of version 2.6.28-11-server is installed. Java

LRU Algorithm

begin

 if (metadataname in cache)

 then value (metadataname) = timestamp

 end if

 while (cachefree < filesize(metadataname))

 find and remove candidate in cache

 with oldest timestamp

 cachefree=cachefree + filesize (candidate)

 insert value(metadataname) = timestamp

 end while

end

version is 1.6.0 and Hadoop version is 0.20.2.

The size of HDFS blocks is 64 MB and the

number of replicas is set to three. During the

experiments, installation of Ubuntu operating

system use 9.8125% and the remaining

90.1875% of the storage space to be used for PC

cluster based storage server.

In the system configuration used the number

of five DataNodes and consumed about 10 GB

Hard disks storage of each PC for installation of

an operating system and other software

installation. The available storage capacity of

these PCs is combined together, and then can

provide 5 x 70 = 350 GB of storage capacity.

The storage capacity remains unused and can be

utilized if combined to store huge amount of

data. If our system configuration used the

number of 20 DataNodes, the available storage

capacity can provide 20x70=1400 GB.

Therefore, in the storage server, storage capacity

can be increased depending on the number of PC

node in PC cluster. The average storage capacity

of PC cluster based storage server is shown in

figure 6. Moreover, 100 MB, 100 MB and 1000

MB of data files are stored to the cluster. The

results of experiment are shown in figure 7.

0

10

20

30

40

50

60

70

80

90

100

OS and

Other

software

installatio

n(%)

Storage

Capacity

(%)

D
is

k
 S

to
ra

g
e
 (

%
)

Figure 6. Average Storage Capacity of PC

cluster based Storage Server

 According to the figure 6, the storage space

percentage of six nodes in the cluster are

93.92%, 92.46%, 92.76%, 92.87%, 92.77% and

92.60% respectively. The OS and other software

installation is 6.08%, 7.54%,7.24%,7.13%,7.23%

and 7.40% respectively. Therefore, the OS and

other software installation used about 10% of the

disk storage and 90% of the storage capacity can

be used in PC cluster based storage server.

Figure 7. Average Disk Usage of PC cluster

based Storage Server

0

5

10

15

20

25

30

10

Mbytes

100

Mbytes

1000

Mbytes

Write

Read

T
h
ro

u
g
h
p

u
t(

m
b

/s
ec

)

Figure 8. Throughput of the File Read and

Write

 According to the figure 7, the disk usage

percentage of six nodes in the cluster are

0.02,0.14%, 0.09%, 0.01%, 0.14%, and 0.01%

for 100MB of data files, 0.44%, 0.7%, 0.75%,

0.35%, 0.4% and 0.52% for 1000MB of data

files and 1.69%, 5.23%, 5.87%, 5.24%, 5.85%

and 13.73% for 10000MB of data files

respectively. In figure 8 shows the throughput

when 10 Mbytes, 100 Mbytes and 1000 Mbytes

of file read and write by using TestDFSIO

benchmark. According to the result of figure 8,

throughput of file read is higher than throughput

of file write.

6. Conclusions

 In this paper, two parts have been described

such as (i) design and architecture of PC cluster

based cloud storage system (ii) to be increased

performance of I/O traffic on the target

architecture. It can be used to store a large

amount of data. As can be seen from

experimental results, the storage can be utilized

more than 90% of storage space. As future

works, the greatest challenge of our system is to

improve fault tolerant and security.

References
[1] C.Yong, M.Lionel and Y.Mingyao, “CoStore: A

Storage Cluster Architecture Using Network

Attached Storage Devices”, In Proceedings of the

Ninth International Conference on Parallel and

Distributed Systems, 2002.

[2] D.Bo, Q.Jie , Z.Qinghua , Z.Xiao , L.Jingwei and

L.Ying, “A Novel Approach to Improving the

Efficiency of Storing and Accessing Small Files

on Hadoop: a Case Study by PowerPoint Files”,

In Proceedings of IEEE International

Conference on Services Computing , 2010.

[3] H.Qinlu , L. Zhanhuai, Z.Xiao, Study on Cloud

Storage System based on Distributed Storage

Systems”, In Proceedings of International

Conference on Computational and Information

Sciences, 2010.

[4] L.Lin, L.Xuemin, J.Hong, Z.Yifeng, “ AMP: An

Affinity-based Metadata Prefetching Scheme in

Large-Scale Distributed Storage Systems”,

Technical Report, Novermber, 2007.

[5] W. Jiyu, Z. Jianlin, L. Zhije, J. Jiehui, “Recent

Advances in Cloud Storage”. In Proceedings of

the Third International Symposium on Computer

Science and Computational Technology, 2010,

pages 151-154.

[6] X.Ke, S.Meina, Z.Xiaoqi and S.Junde, “A Cloud

Computing Platform Based on P2P”. In

Proceedings of IEEE,2009.

