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ABSTRACT

This study attempts to investigate the effect of outliers on estimation of parameters in regression
analysis. The results about outlier robustness point out that the robust and classical methods both
worked well data with no outliers indicating that their mean squares error (MSE) are quite close
to each other. If there are outliers in the data, the robust methods perform better than the
classical method. The OLS estimates provide poor estimates of true parameters of the regression
model. As expected, OLS is a less efficient estimator whatever the type of outliers present in
the data.
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Introduction

Outliers play an important role in regression. Outliers in the response variable represent model
failure. Such observations are called outliers. Outliers with respect to the predictors are called
leverage points. They can affect the regression model, too. Their response variables need not
be outliers. Observation whose inclusion or exclusion results in substantial changes in the fitted
model (coefficients, fitted values) is said to be influential .For this, about the types of outliers
that can be found in regression analysis, their effects on regression coefficients and outliers
detection were discussed in following.

Outliers can be thought of as observations in a data set that cause surprise in relation to the
majority of the data. For example, surprising or extreme observations might be unusually large
or unusually small values compared to the remaining data. Outliers are a common occurrence
in data. They may be the result of an error in measurement of recording or transmission errors
of exceptional phenomena such as earthquakes or strikes, or they may be due to the samples
not being entirely from the same population. Apparent outliers may also be due to the values
being the same, but nonnormal (in particular, heavy-tailed) distribution.

Outliers should be investigated carefully. Often they contain valuable information about the
process under investigation or the data gathering and recording process. Before considering
the possible elimination of these points from the data, one should try to understand why they
appeared.
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Outliers can be classified in statistics as outlying observations in linear regression, time scrics
analysis, survey, directional and contingency table data (Barnett and Lewis, 1978). In the
regression context, outliers are classified as y- and x-outliers. They always cntail both
theoretical and practical problems. Usually, depending on our goal(s), we need onc or more
procedures that are robust, to protect against and detect outlying observations in the data. For
instance, in the case of a forecasting model, it is of utmost importance to be able to detect,
estimate the effects of, and interpret outliers. In some cases, outliers in a residual series may
indicate omission of an explanatory variable from the model. Furthermore, the robust
regression estimates are less biased than OLS and provide estimates of outliers that are more
strikingly seen in residual series.

Outliers may appear in data due to (i) gross errors, (ii) wrong classification of the data (outlying
observations may not belong to the model followed by the bulk of the data), (iii) grouping, and
(iv) correlation in the data (Hampel et al., 1986).

Gross errors often show themselves as outliers, but not all outliers are gross errors. Gross errors
or outliers are data severely deviating from the pattern set by the majority of the data. This type
of error usually occurs due to mistakes in copying or computation. They can also be due to part
of the data not fitting the same model, as in the case of data with multiple clusters. Gross errors
are often the most dangerous type of errors. In fact, a single outlier can completely spoil the
least squares estimate, causing it to break down. Consequently, the estimators may not be
efficient estimators. Some outliers are genuine and may be the most important observations of
the sample. Rounding and grouping errors result from the inherent inaccuracy in collecting and
recording data which are usually rounded, grouped, or even roughly classified. The departure
from an assumed model means that real data can deviate from the assumed distribution. The
departure from the normal distribution can manifest itself in many ways, for instance, in the
form of skewed (asymmetric) or longer-tailed distributions.

Types of Outliers in Regression

According to Rousseeuw and Van Zomeren(1990), there are several kinds of outliers. They
proposed vertical outlier, good leverage point and bad leverage point. A point (x; ,yi) which
does not follow the linear pattern of the majority of the data but whose x; is not outlying is
called a vertical outlier. A point (x; ,y;) whose x; is outlying is called a good leverage point
which follows the pattern of the majority, and a bad leverage point otherwise. To summarize,
a data set can contain four types of points: regular observations, vertical outliers, good leverage
points, and bad leverage points. Of course, most data sets do not have all four types. These
types of outliers are shown in diagrammatic form.

Figure (1) shows these four types in simple regression. Point 4 clearly deviates from the typical
linear relationship between the dependent (¥) and the independent (X)variable. Such ‘vertical’®
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outlier is characterized by an unusual observation in the dependent variable. The impact of
vertical outliers on the estimation of regression coefficients is usually small and mainly affects
the regression intercept. If unusual observations occur in the set of independent variables, these
outliers are called leverage points. If such leverage point deviates from the linear relationship
described by the majority of observations it is called ‘bad leverage point’ such as Point B in
Figure 1. Due to the exposed position of the outlier it has a leverage effect on the coefficient
estimation. In contrast, a leverage point is called ‘good leverage point’ if it does not deviate
from the typical relationship. Good leverage points are no outliers and even improve the
regression inference as these points reduce standard errors of coefficient estimates.

Figure (1) Simple Regression Data with Points of All Four Types

vertical outlier
A good leverage point
Y
regular data
L] .: L
- e = ..- B
w2 bad leverage point
X

Rousseeuw and Van Zomeren(1990) pointed out that high leverages can affect the estimated
slope of the regression line in OLS, thus they may cause more serious problems than other
outliers which might only affect the estimated intercept term. Moreover, their occurrence in
regression models may move to some low leverage as well as high leverage and it can turn in
vice versa. These two concepts are called masking and swamping in linear regression
(Rousseeuw and Leory, 1987). Furthermore, the range of explanatory variables increases when
they exist in regression analysis. Thus, the multiple coefficient determination statistics (R*)
which is a well known and popular measure of goodness-of-fit in the regression models will
increase even by any changes of a single x variable (Ryan, 1997). In addition, high leverages
may be the prime source of collinearity-influential observations whose presence can make
collinearity and can destroy the existing collinearity pattern among the x variables (Hadi,
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1992). In this respect, the identification of high leverage points to prevent their effect on linear
regression becomes necessary.

2. Data and Methods

This paper focuses on the effect of the outlier on parameters estimation in regression by using
the OLS method and robust methods. The required data sets are generated by using multiple
linear regression models with three explanatory variables. Then, these data sets are transformed
into outlier contaminated data sets. After that, the performances are compared in terms of bias
and MSE criteria and then the most suitable estimation method is chosen.The statistical
software packages namely S-PLUS 2000, STATA 10, and SPSS 13.0 were used to obtain the
desire estimates throughout the analyses.

3. Results and Discussion

In this section, the performances of OLS and robust estimators were analyzed by
simulations.First, the required data were generated from a multiple regression model.Then,
simulated data were used to show that the robust methods outperform the classical method in
presence of outliers. The data sets were generated from the following model:

P
yi=ﬂo+2ﬁjxij+q,i=1,2,...,n (1)
7=

where all regression coefficients are fixed f,=5and f,= 1, foreachi=1.2,...,nand j=
1,2,...,p. The explanatory variables were randomly generated from a normal distribution with
mean 0 and unit variance. The errors were assumed to be i.i.d. with N(0,0.5).The data sets were

generated under three regressors (p = 3) and the sample sizes were (n = 30 and n = 40)
respectively. The true y's were calculated from the Equation (1).

I this simulation study, two types of outlier namely vertical outlier and bad leverage point
were studied because they give different effects in the estimation of parameters of the
regression model. After generating the data sets, two scenarios were considered in the
following manners. They were seen as follows

(1) outliers in the independent variable: 10% of the y observations set to be vertical outliers
by multiplying constant number 5 and keeping the others.

(ii) outliers in both y and x: 10% of both y and x observations were modified to be vertical
outlier and bad leverage points and the remaining were unchanged. The vertical outlier was
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obtained by multiplying 5 to its y value and the bad leverage point was obtained by adding
10 to its x value.

All simulations were done with 100 replications.To measure the robustness, the bias (that is
the average of the estimated parameters minus the true value) and the mean squared errors (that
is the variance of the estimated parameters plus the square of the bias) were used. For the first
scenario, among the robust methods the LAV, M and MM-estimators were applied to this
simulated data set because these estimators are robust subject to the vertical outliers. Then, this
procedure was repeated 100 times and each time the parameters of OLS, LAV, M- (using
Huber and Turkey) and MM-estimators (with a 70%, an 85% and a 95% efficiency) were
estimated. On the basis of all the estimated parameters, the bias and the MSE were computed
and the results were presented in Table (1). Figure (2) summarizes the results of simulations
where n = 30 and n = 40 observations and three predictors. Bars represent bias and MSE for
each estimator.

It is seen in Table (1) and Figure (2) that in the presence of vertical outliers, both the bias and
MSE obtained from the MM-estimators (with a 70%, an 85% and a 95% efficiency), Huber
and Turkey-M, and LAV are much close to each other but inferior to the OLS estimator. Their
patterns shown in Figure 2(a) to (d) are intermingled and so no methods have a preferable bias
and MSE in this case.

In the case of second scenario, the LAV, M, MM, LTS and LMS estimators were applied to
this simulated data set. The results are shown in Table (2) and Figure(3). According to Figure3,
the bias and MSE obtained from theHuber and Turkey-M are the smallest, followed by the
MM-estimators (with a 70%, an 85% and a 95% efficiency) and LTS estimator in presence of
vertical outlier and bad leverage points. In this case, the LMS behaves differently but just
slightly, and have a bias and an MSE comparable to that of Huber and Turkey-M and MM-
estimators. The OLS method also indicated in Figure 3(a) to (d) performs much worst in these
situations. Therefore, the low bias and MSE values of theHuber and Turkey-M and MM-
estimators are in line with the asymptotic robustness properties. As expected, OLS is a
relatively less efficient estimator whatever the type of outliers occurred in the data.

4. Conclusion

In order to analyze the effect of outliers on the estimation of parameters in regression model,
the classical and the robust estimation techniques are used. In this study, the multiple linear
regression with three explanatory variables is used to generate the data sets. These clean data

sets are transformed into outlier contaminated data sets. In this simulation study, two scenarios
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are analyzed. According to the findings of the first scenario, it is shown that the MM -estimates
(with a 70%, an 85% and a 95% efficiency), Huber and TurkeyM- estimates, and LAV
estimates are more resistant and efficient in the presence of vertical outliers. The OLS estimates
provide poor estimates of true parameters of the regression model. Similarly, theHuber and
TurkeyM-estimates and MM -estimates are in line with the asymptotic robustness properties in

the presence of both vertical and bad leverage points. As expected, OLS is a less efficient

estimator whatever the type of outliers present in the data.

Table (1) Bias and MSE for OLS and Robust Methods of Simulated Data

with Vertical Outliers

Sg?zgle Estimation Method i B B, JiA
n=30 OLS Bias 1.9748 | 0.9043 1.0060 1.1331
MSE 4.4833 1.7279 1.6046 | 2.0718
LAV Bias 0.3237 0.3173 0.2570 0.2460
MSE 0.3378 0.3391 0.1148 | 0.1133
M-H Bias 0.3151 0.2832 0.2277 0.2381
MSE 0.3284 0.3018 | 0.0916 | 0.0958
M-T Bias 0.2354 0.2419 | 0.1813 0.1787
MSE '0.2809 | 0.2519 | 0.0625 0.0574
MM-0.70) Bias 0.2481 0.2794 | 0.2143 0.2081
MSE 0.2905 | 0.2940 | 0.0934 | 0.0762
MM(0.85) Bias 0.2403 0.2513 0.1914 0.1892
MSE 0.2800 02744 | 0.0690 0.0647
MM-(0.95) Bias 0.2387 0.2506 0.1932 0.1813
MSE 0.2827 | 02744 | 0.0729 | 0.0593
n=40 ‘OLS Bias 2.0424 109613 | 0.7830 | 0.8337
MSE 5.2361 1.4872 1.0443 1.3226
LAV Bias 0.3744 0.1748 0.2479 0.2070
MSE 0.9587 | 0.0454 | 0.1463 | 0.1095
M-H Bias 0.3800 | 0.1810 | 0.2233 | 0.1918
MSE 1.0227 | 0.0544 | 0.1283 | 0.1095
M-T Bias 0.2994 | 0.1446 | 0.2092 | 0.1579
MSE 0.8796 | 0.0346 | 0.1100 | 0.0643
MM-(0.70) Bias 0.3171 0.1702 0.2202 0.1726
MSE 0.8723 0.0455 0.1151 0.0696
MM(0.85) Bias 0.3099 0.1543 0.2111 0.1599
MSE 0.8772 0.0407 | 0.1081 0.0602
MM-(0.95) Bias 0.2999 0.1511 0.2153 0.1556
MSE 0.8763 0.0380 0.1107 0.0585

Simulation setup: simulations = 100, contamination = 10%

Source: Calculations based on simulation data
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Table (2) Bias and MSE for OLS and Robust Methodsof Simulated

Data with Vertical Outlier and Bad Leverage Points

Sample

Size Estimation Method B, B Jix Jix

n=230 OLS Bias 0.7798 0.1761 0.1618 0.6959
MSE 1.1732 | 0.0558 | 0.0464 | 0.8442

LAV Bias 0.3016 | 0.0832 | 0.0983 0.2025
MSE 0.6038 | 0.0135 0.0166 | 0.0829

M-H Bias 0.2894 0.0796 0.0855 0.1934
MSE 0.5636 0.0124 0.0120 0.0743

M-T Bias 0.2896 0.0926 0.0932 0.1814
MSE 0.5688 | 0.0201 0.0180 | 0.0624

MM-(0.70) Bias 0.3057 | 0.1286 | 0.1261 0.2095
MSE 0.6098 | 0.0397 0.0387 | 0.0852

MM-(0.85) Bias 02966 | 0.1175 0.1165 0.1872
MSE 0.5638 0.0309 0.0315 0.0665

MM-(0.95) Bias 02905 §0.1218 0.1112 0.1841
MSE 0.5686 0.0387 0.0262 0.0674

LMS Bias 0.3150 | 0.0992 0.0999 | 0.2046
MSE 0.5869 | 0.0233 0.0215 0.0762

LTS Bias 0.4382 | 0.2175 0.2680 | 0.3365
MSE 0.7850 | 0.1027 0.1484 | 0.1802

n=40 OLS Bias 0.4899 ] 0.1193 0.1449 | 0.1400
MSE 0.2817 0.0240 0.0556 0.0357

LAV Bias 0.1614 0.0775 0.0855 0.0762
MSE 0.0462 0.0097 0.0170 0.0094

M-H Bias 0.1408 0.0637 0.0714 0.0708
MSE 0.0352 0.0067 0.0152 0.0082

M-T Bias 0.1432 0.0786 0.0804 0.0769
MSE 0.0362 | 0.0163 00177 0.0099

MM-(0.70) Bias 0.1559 | 0.1138 0.1013 0.0944
MSE 0.0444 | 0.0296 0.0242 0.0172

MM(0.85) Bias 0.1546 | 0.1016 0.0886 | 0.0905
MSE 0.0407 | 0.0253 0.0182 0.0144

MM-(0.95) Bias 0.1462 | 0.0962 0.0887 | 0.0800
MSE 0.0366 0.0252 0.0203 0.0107

LMS Bias 0.1701 0.1078 0.0953 0.0855
MSE 0.0515 0.0290 | 00228 | 0.0129

LTS Bias 0.3212 | 0.2157 | 0.1847 | 0.1872
MSE 0.1621 0.0978 | 0.0715 0.0750

Simulation setup: ~ simulations = 100, contamination = 10%

Source: Calculations based on simulation data
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