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Abstract

There are several interesting nonnegative integer sequences (for example, eccentric
sequences, distance-sum sequences, branch-weight sequences) associated with
vertices in graphs. In this paper, the eccentricity sequences of graphs are studied and
some properties of graphs having preassigned eccentric sequence are expressed.
Moreover, the necessary and sufficient condition for a sequence to be eccentric is
discussed.
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Introduction

A graphical sequence, namely, eccentricity sequence which is distance based,
is introduced to study various graph properties. The eccentricity sequence is a
nonnegative integer sequence associated with vertices in a graph.

In this paper, only undirected connected finite graphs without loops are
considered. An eccentricity of a vertex, and a center of a graph are defined. Some
useful definitions and their examples are expressed.

Some properties of eccentricity sequence are discussed. The eccentricity
sequences of some special classes of graphs are characterized.

The Eccentricity of a Vertex and the Center of a Graph

In this section, some definitions which are useful for the later discussions. For
other graph-theoretic terms are not defined but used in this paper, they are referred to
Bondy and Murty (1982).

The Eccentricity of a Vertex. Let G be a connected graph with a vertex set /(G) and
an edge set E(G). If x and y are two vertices in G, the distance between x and y is
denoted by dg(x, y) and defined as the length of a shortest path joining them. For a
vertex v in G, the eccentricity eg(v) of v is the distance between v and the farthest
vertex from it in G, more precisely
eg(v) = max {ds(v, x) : x eV(G)}.
In the sequel if it is not complex, W(G), E(G), dg (x, y) and e(u) will be denoted

by V, E, d(x, y) and e(u) respectively.

Example. The eccentricity of each vertex of a graph G is shown in Figure 1.1 where
each number in parenthesis next to each vertex represents its eccentricity.

a(3) b(3)
G: d(2) e(2)

c(2)
Figure 1.1

! Assistant Lecturer, Department of Mathematics, Yangon University of Economics

137



For the vertex a in G, d(a, b) =1, d(a, c) =1, d(a, d) = 2, d(a, e) = 2,
d(a, f)=3. Thus
e(a)=max {d(a,x):x e V} =3.
Similarly, the eccentricities of remaining vertices of the graph G can be found.

The Center of a Graph. Let G be a connected graph with a vertex set V and an edge
set E. The center C(G) of G is the set of all vertices having minimum eccentricity.
Thus

C(Gy={ueV:e(u)<e(v) forallv e V}.

Example. In the graph G of Figure 1.1,
e(a)=3, e(b)=3, e(c) =2,

e(d)=2, e(e) =2, e(f)=3.
Therefore C(G)={c, d, e}.

Jordan [1869] obtained the following result on the center of a tree.

Theorem. The center of a tree consists of either a vertex or a pair of adjacent
vertices.

Definitions. Let G be a connected graph with the vertex set } and the edge set E. The
radius of G, denoted by rad G, is the minimum eccentricity of vertices in G. Thus
rad G=min {e(v):v e V}.
The diameter of G, denoted by diam G, is the maximum eccentricity of
vertices in G. Thus
diam G=max {e(v):ve V}.

Example. For the graph G of Figure 1.1, rad G =2 and diam G = 3.

The following theorem which can be easily proved is useful for the later
discussion.

Theorem. For any connected graph G, the radius and diameter satisfy
rad G < diam G <2rad G.

The Eccentricity Sequence of a Graph and Some Properties

In this section, the eccentricity sequences of a connected graph will be
investigated.

The Eccentricity Sequence of a Graph. A nondecreasing sequence S(ai, gz, ..., a,) of
nonnegative integers is called an eccentric sequence if there exists a connected graph
G whose vertices can be labelled vy, v, ..., v, so that e(v;) = g; for all i. In this case S
is said to be the eccentricity sequence of G.
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Example. The nondecreasing sequence (3, 3, 4, 4, 4, 4, 4, 4, 5, 5) is the eccentricity
sequence of the graph G shown in Figure 1.2.

Figure 1.2

Now some properties of eccentric sequences will be discussed.

Theorem. If a nondecreasing sequence (ai, a2, ..., a, ) Where p > 2 is eccentric, then
the following must hold:

(1) a1 <p/2;
(ii) If k£ is any integer with a; < k < a,, then a; = a1 = k for some i
2<i<p-1);

(iii) ap <min {(p — 1), 2a1}.
Proof. Let G be a connected graph with eccentricity sequence (a, aa, ..., ap).
(1) The vertices of G can be labelled v, vy, ..., v, so that e(v;) = a; for all i.
Choose a spanning tree 7 of G which is distance-preserving from v;. Then

ec(vi)'= erf(v). For 2 < i < p, eg(vi) < er(v;). Therefore if (a; ,a;,K,a;) is the

eccentricity sequence of 7, a; = a,. Thus it suffices to show that if (a1, ay, ..., a) is

the eccentricity sequence of a tree 7, then a; < p/2. For p = 2, the result holds. Assume
that p > 3. Suppose, to the contrary, that a; = (p + 1)/2. Let u be a vertex of T with
e(u) = a;. Clearly, u must be a cutvertex of 7. Since e(u) 2 (p + 1)/2, the graph T — u
has a component H with |V(H)| = (p + 1)/2. Let v be the unique vertex of H adjacent to
u in T. For w € WV(H), div, w) = du, w) — 1 which implies that
d(v, w) <e(u). Forw € V(T)-V(H), d(v, w) = d(u, w)+1.

Since |(T) — V(H)| < (p — 1)/2, it follows that d(u, w) < (p — 3)/2. Thus
d(v, w) < (p — 1)/2 < e(u). But then e(v) < e(u) which is a contradiction.

(ii) To show that if P : uo, uy, ..., un is a path in G with e(ug) < e(uy) and & is
an integer with e(up) < k& < e(u,,), then there exists an integer j, 0 <j < m, such that
e(u;) = k. Since ujui1 € E(G),0<i<m-1, e(uir1) <e(u;) + 1.

Letj=1+max {i|e(u;) <k}. Then e(y;_1) <kandso e(y) <e(u—1)+1=<k
By the choice of j, e(#) = k. Thus e(u)) = k.

In order to complete the proof of part (ii), it suffices to show that if w is a
vertex of G with e(w) > a; and & is an integer such that a; < k < e(w), then there is a
vertex of G other than w with eccentricity equal to %k Let u € W(G) with
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d(u, w) = e(w), let v e V(G) with e(v) =a;, and let P : v=uy, uy, ..., Uy = u be a (v, u)-
path in G. Note that m < a;. Now, since
e(W)=a;<k=<e(w)=du,w)<e(u),
by the preceding paragraph there exists an integer j, 0 <j < m, such that e(y;) = £.
Moreover, since
d(u, w)) <m < a; <e(w)=du, w),

Ui #w.

(111) Clearly, a, < p — 1. For every connected graph G, diam G <2 rad G. Since
a) =rad G and a,= diam G, the result follows. [

Remark. The conditions in Theorem (2.3) are necessary for a sequence to
be eccentric, but these conditions are not sufficient. For example, the sequence
(3,4,4, 5, 5, 5) is not eccentric.

The following theorem is a necessary and sufficient condition for a sequence
to be eccentric.

Theorem. A nondecreasing sequence S(ai, a2, ..., ap) with m distinct values is
eccentric if and only if some subsequence of S with m distinct values is eccentric.
Proof. If S is eccentric, then S is an eccentric’ subsequence of itself with m distinct
values.

For the converse, suppose $" is an eccentric subsequence with m distinct
values. Let G be a graph with eccentricity sequence S and let #1, #, ..., ts be the

distinct values that occur in S . For each t;, 1 <i < m, select a vertex w; of G whose
eccentricity in G is #;. For each i, 1 <i < m, let n; equal one more than the number of

. . * .
occurrences of £ in S less the number of occurrences of #; in S . In G, replace w; with

K, and join each vertex of K to all vertices adjacent to w) in G, to obtain a new
1 1

graph, say Gj. Again in Gy, replace w, with K % and join each vertex of an to all

vertices adjacent to w, in Gy, to get a new graph, say G,. Continue in thisl way
to obtain the graph G,. It is not difficult to see that S is the eccentricity sequence

The proof technique of Theorem (2.5) with an example will be illustrated.
Example. LetS(2,2,2,2,3,3,3,3,3,4,4,4, 4,4, 4, 4) be anondecreasing sequence
with three distinct values f;, =2, =3 and ; = 4.

Consider the sequence S *(2, 2,2,3,3,3,3.4.4,4,4,4, 4 whichis a
subsequence of S with three distinct values t; = 2, £, = 3 and #; = 4, also is the
eccentricity sequence of the graph G; shown in Figure 1.3.

G :




In fact
e(vs) = e(ve) = e(v7) =2,
e(v2) = e(v3) = e(vs) = e(vs) = 3,
e(v1) = e(vo) = e(vio) = e(vi1) = e(vi2) = e(v13) = 4.
Thus S (2, 2, 2, 3, 3, 3, 3,4, 4, 4, 4, 4, 4) is the eccentricity sequence of G.
For #;, = 2, choose the vertex vs with e(ve) = 2.
Then
n; = the number of the occurrences of ¢ in S
— the number of the occurrences of #; in S~ + 1
=4-3+1
=2.
Replacing the vertex v by K, with the vertex set {x;, x2} and joining each
vertex of K, to all vertices adjacent to v in Gj, the graph G, with the eccentricity
sequence (2,2,2,2,3,3,3,3,4,4,4,4, 4, 4) shown ir%,9 Figure 1.4 is obtained.

G :

Figure 1.4

For f,= 3, choose the vertex vs with e(vs) = 3. Then n, = 2. Replacing the
vertex vs by K, with the vertex {y;, y»} and joining each vertex of K to all vertices
adjacent to vs in G,, the graph G3 with the eccentricity sequence (2, 2, 2, 2, 3, 3, 3, 3,
3,4,4,4,4, 4, 4) as shown in Figure 1.5 is obtained.

Figure 1.5

For t; = 4, choose the vertex v, with e(v;2) =4. Then n; = 2.

Replacing the vertex v, by K; with the vertex {z), z>} and joining each vertex
of K, to all vertices adjacent to vy, in Gjs, the graph G4 with the eccentricity sequence
82,2,2,2,3,3,3,3,3,4,4,4,4,4, 4, 4) as shown in Figure 1.6 is obtained.

Vg
Va2 ™ [ 7
G4. : Vg
(g N o U1
z3
Vs | s Z1
U1

Figure 1.6
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Now, a corollary to Theorem (2.5) may be stated.

Corollary. Let S(ai, a3, ..., a,) be a sequence of nonnegative integers, where
a;= a for all i. Then S is eccentric if and only ifa=0andp=1or 1 <a <p/2.

Proof. Suppose S is eccentric. If a # 0, since 0 < a < p/2 by Theorem (2.3), it follows
that 1 <a <p/2.

Ifa=0,thenp=1.
For the converse, the following cases are considered.

Case 1. Suppose a = 0 and p = 1. In this case, S is the eccentricity sequence of
K.

Case 2. Suppose a = 1. Since a < p/2, p = 2. Thus S is the eccentricity
sequence of K, .

Case 3. Suppose a = 2. Since a < p/2, p 2 2a = 4. Consider the subsequence

S*(ai, ay, ..., azs), which is the eccentricity sequence of the cycle Ca,. By Theorem
(2.5), the sequence S is eccentric.

Hence in each possible case, S is eccentric. [ |

The Eccentricity Sequences of Some Special Classes of Graphs

In this section the eccentricity sequences of some special classes of graphs,
namely complete graphs K, complete bipartite graphs K, , cycles C, of order n, and
paths P, of order n (here » is the number of vertices in the corresponding graph) will
be characterized.

The Eccentricity Sequence of a Complete Graph. The sequence (1,1, ...,1) with p
terms is the eccentricity sequence of a complete graph K, (p = 2).

Example. The sequence (1,1) is the eccentricity sequence of complete graph K;
shown in Figure 1.7(a). Similarly, the sequence (1, 1, 1, 1, 1) is the eccentricity
sequence of Ks shown in Figure 1.7(b).

Kﬂ H Ks &
(a) ; (b)
Figure 1.7

The Eccentricity Sequence of a Complete Bipartite Graph. The sequence
(1, 2, 2, ..., 2) is the eccentricity sequence of a complete bipartite graph K,
(m=1,n22). For 2 <m < n, the sequence (2, 2, ..., 2) with » terms is the eccentricity
sequence of K, ».
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Example. Figure 1.8(a) shows that the sequence (1, 2, 2) is an eccentricity sequence
of the complete bipartite graph K » (m =1, n=2).

Similarly, the sequence (1, 2, 2, 2, 2, 2) is the eccentricity sequence of K] s
shown in Figure 1.8(b).

Ky q: ‘ K s:

(a) b
Figure 1.8 )

The sequence (2, 2, 2, 2) is the eccentricity sequence of K, » shown in
Figure 1.9(a) and the sequence (2, 2, 2, 2, 2, 2, 2) is also the eccentricity sequence of

K5 s as shown in Figure 1.9(b).
Kﬂ, 2: N KQ, 5 %
(a) (b)

Figure 1.9

The Eccentricity Sequence of a Cycle. The sequence (%,%,K ,-g—) with n terms is

the eccentricity sequence of a cycle C, of order n where # is even.

If n is odd, the eccentricity sequence of the cycle C,, is (n :2 1, & -2 L K, s -2 1)

with »n terms.

Example. The sequence (1, 1) is the eccentricity sequence of a cycle C; shown in
Figure 1.10(a). The sequence (2, 2, 2, 2) is the eccentricity sequence of C4 shown in
Figure 1.10(b). '

C,: Q Ci;

(a) (b)
Figure 1.10
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Similarly, the sequence (1, 1, 1) is the eccentricity sequence of cycle C3 shown
in Figure 1.11(a) and the sequence (3, 3, 3, 3, 3, 3, 3) is the eccentricity sequence of C;
shown in Figure 1.11(b).

Cs: j C::

() . (b)
Figure 1.11

n+2 n+2
A

n

The Eccentricity Sequence of a Path. The sequence ( —, g ;
2n2—2’ 2n2—2) is an eccentricity sequence of a path P, of order n where n is

seey

€ven.

If n is odd, the eccentricity sequence of the path P, is(nz—l,nz-l "'2”

H 2

n+3 n+3 . 2n—-2 2n-2

2 "2° " 2 ¥ 2

).

Example. The sequence (3, 3, 4, 4, 5, 5) is the eccentricity sequence of the path Pg
shown in Figure 1.12(a) and the sequence (5, 5, 6, 6, 7, 7, 8, 8, 9, 9) is the eccentricity
sequence of Py shown in Figure 1.12(b).

SV AR m
(a) (b)

Figure 1.12
Similarly, the sequence (2, 3, 3, 4, 4) is the eccentricity sequence of path Ps
shown in Figure 1.13(a) and the sequence (4, 5, 5, 6, 6, 7, 7, 8, 8) is also the
eccentricity sequence of Py shown in Figure 1.13 (b).

Py M Py

(a) (b)
Figure 1.13
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