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CHAPTER 1 

INTRODUCTION 

 There are several methods for measuring the relationship among economic 

variables. The simplest methods are correlation analysis and regression analysis. 

Regression analysis was first developed by Sir Francis Galton who was a well known 

British anthropologist and meteorologist in the latter part of the 19th century. It is a 

statistics methodology that utilizes the relation between two or more variables so that 

one variable can be predicted from the other, or others. This methodology is widely 

used in businesses, social and behavioral sciences, biological sciences, and many other 

disciplines. 

 Many regression models in which the regressand, the dependent variable, or the 

response variable, say Y, is quantitative, whereas the explanatory variables are either 

quantitative (or dummy), or a mixture thereof. In much research work, the researchers 

often face situations where the dependent variable of interest is a qualitative in nature. 

The dependent variable of interest or regressand,Y, may be two or three or multiple 

possible qualitative outcomes. The models in which the dependent variable or 

regressand, Y, is qualitative variable are called qualitative response models. These 

models are valuable in the analysis of survey data. The simplest possible qualitative 

response regression model is the binary model in which the regressand, has only two 

possible qualitative outcomes, and therefore can be represented by a binary indicator 

variable taking on values 0 and 1. So the regressand can be said that a binary or 

dichotomous variable and the models developed for such situations are called binary 

response models.  

 Both theoretical and empirical considerations suggest that when the response 

variable is binary, the shape of the response function will frequently be curvilinear. 

The shape of this response function is a titled S or as a reverse titled S, and they are 

approximately linear except at the ends. These response functions are often referred to 

as sigmoidal. 

 In a model where Y is quantitative, the objective is to estimate its predicted, or 

mean value given the values of the regressors, that is, E(Yi∣X1i, X2i, X3i,……,Xki), 

where the X's are regressors, may be quantitative or qualitative or both. In models 

where Y is qualitative, the objective is to find the probability of something happening.  
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Hence, qualitative response regression models are often known as a type of probability 

models. Qualitative response models have been extensively used in biometric 

applications for a much longer time than they have used in economic applications.  

 Among the qualitative response models, linear probability, logit and probit 

(also known as normit) models are studied in this paper. The objectives of this paper 

are to study; 

(1) how to develop the qualitative response models; 

(2) how to estimate the qualitative response models; 

(3) how to evaluate the qualitative response models; 

Firstly, the natures of qualitative response models are introduced in Chapter I. 

The specification and estimation procedure of the qualitative response models are 

discussed in Chapter II. Then, in Chapter III, diagnostic statistics for qualitative 

response models are discussed and, the applications of the models are studied in 

Chapter IV. Finally, the important characteristics of the models and findings are 

summarized in Chapter V. 
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CHAPTER II 

MODEL SPECIFICATION AND ESTIMATION 

 In this Chapter some of the qualitative response models are considered for a 

binary response variable. Among the binary response models, linear probability, logit, 

and probit (normit) models are discussed in the following sub-sections. 

 

2.1 Linear Probability Model (LPM) 

2.1.1 Functional Form 

 The functional form of a linear probability model can be expressed as  

   Yi = β1 + β2 Xi + ui       (2.1.1)  

where   Yi = 1 if the event occurs and 

       = 0 if the event does not occur 

 β1 and β1 are regression coefficients. ui is a random error term. Xi is the 

predictor variable.  

 It can be extended to more than one predictor variable.  

That is, 

 

 Yi = β1 + β2 Xi2 + β3 X i3+…………..+ βk X ik + ui   (2.1.2) 

 Y  = X β + u        (2.1.3) 

 

 Assume that the model contains a constant term, that is, Xi1 = 1 for all 

individuals. The regression coefficient is interpreted in terms of the probability of 

being in the interest category on Y. Hence, β2 represents the change in he probability 

for each unit increase in Xi, net of the other covariates, and so on.  

 

2.1.2 Examination of the Assumption of ui 

Assuming E(ui) = 0, the conditional expectation of Yi given Xi is obtained as: 

 

  E(Yi X i)= β1 + β2X i2 + β3X i3 +…………..+ βk Xik =   ∑ ����  (2.1.4) 

             = xi' β 

 If  �i is the probability that Yi =1 (that is, the event occurs), and ( 1- �i) is the 

probability that Yi = 0 (that is, the event does not occur), then the variable Y follows 

Bernoulli probability distribution. The expectation of Y is obtained as 
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  E(Yi) = 1. �i + 0 (1- �i) = �i    (2.1.5) 

      = Pr (Yi=1) 

 

 Comparing Equation (2.1.4) with Equation (2.1.5), the conditional expectation 

of the model (2.1.2) can be interpreted as the conditional probability of Y. That is, 

  

  E (Yi Xi)  =  β1 + β2X i2+ β3X i3 +…………..+ βk X ik 

   = �i  

    = Pr (Yi=1) 

 

 Since the probability �I must lie between 0 and 1 , this is a restriction. 

That is,  0≤ E (Yi Xi) ≤1. 

 Then the disturbances (ui) also take only two values; that is , they follow the 

Bernoulli Distribution. 

  Yi  ui  Pr (Yi) 

  1        1- xi' β  �i 

  2          - xi' β  1- �i 

      1 

 

 Obviously,ui cannot be assumed to the normally distributed; the follow the 

Bernoulli distribution. The OLS point estimators still remain unbiased. Besides, as the 

sample size increases indefinitely, statistical theory shows that the OLS estimators 

tend to be normally distribute generally .As a result, in large samples the statistical 

inference of the LPM will follow the usual OLS procedure under the normality 

assumption. 

 Even if E(ui) = 0 and Cov (ui, uj) = 0 for i  = j (i.e., no serial correlation), it can 

no longer be maintained that in the LPM the disturbances are homoscedastic.  

 As statistical theory shows that for a Bernoulli distribution the theoretical mean 

and variance are, respectively, �I and (1- �i), where �I is the probability of success 

(i.e., something happening) showing that the variance is a function of the mean. Hence 

the error variance is heteroscedastic. The variance of the error term is  

 

 Var (ui) = �I (1- �i). 
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 That is,  the  variance  of  the  error  term  in  the  LPM  is heteroscedastic. 

Since �i = E (Yi ∣X i) = ∑  βk X ik the variance of ui ultimately depends on the values 

of X and hence is not homoscedastic.  

 

2.1.3 Estimation 

 For a model with heteroscedastic error disturbances it can be assumed that each 

error term ui is normally distributed with variance 
i
2, where the variance Var (ui) = E 

(ui
2) = 
i

2 is not constant over observations. When heteroscedasticity is present, 

ordinary least squares estimation places more weight on the observations with large 

error variances than on those with small error variances. In the presence of 

heteroscedasticity, the OLS estimators, although unbiased, are not efficient; that is, 

they do not have minimum variance. If the heteroscedasticity is present, the 

appropriate estimation technique is the weighted least-squares estimation procedure, 

which can be derived from the maximum likelihood function.  

 Consider the simple linear probability model 

 

  Yi = β1 + β2X i + ui ; where V (ui) = 
�
�.  (2.1.1) 

 

 By minimizing the expression where the original variables are written in 

deviation form, the appropriate estimation can be obtained as 

 

 �� = 
∑ 
���/��

�

∑ 
�
�/��

�  

   

= 
∑(
�/��)(��/��)

∑(
�/��)�   

 

= 
∑ 
�

∗��
∗

∑(
�
∗)� where ��

∗ = 

�

��
 , ��

∗  =  
��

��
 

 

 To use weighted least-squares, the variables in the original regression model of 

Equation (2.1.1) are redefined as; 

   

   Yi
* = 

��

��
, Xi

* =  

�

��
, ui

* = 
��

��
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where  Var (��
∗) = Var (

��

��
)  = 

�
��

� Var (ui) 

      = 
��

�

��
� 

    =1 

 Now, the new error term is homoscedastic. 

 Since there are many situations in which the relative magnitude of the error 

variances is not known, it is important to consider special cases in which sufficient 

sample information is available to make reasonable guesses of the true error variances.  

 One possibility is the existence of existence of a relationship between the error 

variances and the values of explanatory variable in the regression model. Specifically, 

assume that 

  Var (ui) =  ���
� 

 

where C is a nonzero constant and Xi is an observation of the independent variable in 

the linear probability model. 

 If the variances are unknown, the variables in the above equation can be 

transformed as; 

  ��
∗=  

��


�
, Xi

* =  
�

�

, ui
* = 

��


�
 

Where Var (��
∗)  = Var ( 

��


�
 ) 

   =  
�

��
� Var (ui) 

   =  
�


�
� Var (ui) 

   = 
�


�
�  ���

� 

   = C 

 Now, error term ��
∗ is homoscedastic. 

 The LPM is plagued by problems, such as 

(1) non – normality of ui 

(2) heteroscedasticity of ui 

(3) possibility of ���  lying outside the 0-1 range, and 

(4) the generally lower R2 values.  
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 But these problems are surmountable. 

 As mentioned above, WLS can be used to resolve the heteroscedasticity 

problem or increase the sample size to minimize the non-normality problem. By 

resorting to restricted least-squares or mathematical programming techniques the 

estimated probabilities can be made to lie in the 0-1 interval.  

 But even then the fundamental problem with the LPM is that it is not logically 

a very attractive model because it assumes that �i =E (Y = 1 X) increases linearly with 

X, that is the marginal or increment effect of X remains constant throughout.  

 Therefore, what we need is a (probability) model that has these two features; 

(1) as Xi increases , �i =E(Y = 1 Xi) increases but never steps outside the 0-1 

interval , and 

(2) the relationship between �i  and Xi is nonlinear, that is "one which 

approaches zero at slower rates as Xi gets small and approaches one at 

slower and slower rates as Xi gets very large.  

 

2.2 Logit Model 

 Both theoretical and empirical considerations suggest that when the response 

variable is binary, the shape of the response function will frequently be curvilinear. 

The response functions are shaped either as a title S or a reverse titled S and that they 

are approximately linear except at the ends. These response functions are often 

referred to as sigmoid. They have asymptotes at 0 and 1 and thus automatically meet 

the constraints on E (Y). 

 The commonly used non-linear probability models are logit and probit models. 

The two distributions most often employed are the standard normal distribution and 

the standard logistic distribution. The standard normal distribution employed can be 

called as probit and the standard logistic distribution, as logit.  

 

2.2.1 Functional Form 

 The simple logit model is expressed as  

 

             �i = 
� ! (∑ "#$�#)

�%� ! (∑ "#$�#)
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  �i = 
� ! (
�

&")
�%� ! (
�

&")
      (2.2.1) 

 

Letting  Zi = ∑ ��X()   

 

  �i = 
*+�

�%*+�
 

      =  
�

�%*,+       (2.2.2) 

 

2.2.2 Features 

 The features of the logit model are as follows; 

(1) Logistic regression effects can be expressed in terms of percent changes in 

the odds. Odds ratios are useful in estimating changes in the probability of 

event occurrence with changes in predictors once a baseline probability has 

been calculated.  

�i    =     
-./

�%-./
 

 

1- �i  = 1 -  
-./

�%-./
 

   

= 
�%-./, -./

�%-./
 

     = 
�

�%-./
    (2.2.3) 

 The ratio of Equation (2.2.2) to (2.2.3) 

 

  
 01 

�%01  
 = (

-./

�%-./
) / (

�
�%-./

)     (2.2.4) 

 

   =-2�        

  
 01 

�%01  
 can be called the odds ratio.  
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Take the natural log of Equation (2.2.4) 

  Li  = ln (  πi 
1+πi  

) 

   = Zi 

   = ∑ ��X()         (2.2.5) 

 

 The logit L goes from -7 to + 7 as � goes from 0to1. That is, although the 

probabilities (of necessity) lie between 0 and 1, the logits are not so bounded.  

(2) Although L is linear in X, the probabilities themselves are not. This property is 

in contrast with the LPM model where the probabilities increase linearly with 

X.  

(3) If L, the logit, is positive, it means that when the value of the regressor  (s) 

increases, the odds that the regressand equals 1 (meaning some event of interest 

happens) increases . It L is negative,the odds that the regressand equals 1 

decreases as the value of X increases. To put it differently, the logit becomes 

negative and increasingly large in magnitude as the odds ratio decreases from 1 

to 0 and becomes increasingly large and positive as the odds ratio increases 

from 1 to infinity.  

(4) More formally, the interpretation of the logit model given in Equation (2.2.4) is 

as follows; �2, the slope, measures the change in L for a unit change in X. The 

intercept �1 is the value of the log odds in favor of occurring an event if the 

other event does not occur (or) is zero.  

(5) If we actually want to estimate not the odds in favor of event but the 

probability of event itself, this can be done directly from Equation (2.2.2) once 

the estimates of �1 and �2 are available.  

(6) Whereas the LPM assumes that �i is linearly related to Xi, the logit model 

assumes that the log of the odds ratio is linearly related to Xi. 

 

2.2.3 Estimation  

 A logistic response function is either monotonic increasing or 

monotonic decreasing, depending on the sign of the slope coefficients. It can be 

linearized easily. Logistic response functions, like the other response functions which 

have been considered are used for describing the nature of the relationship between  

the mean response and one (or more) predictor variable (s). They are also used for  
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making predictions. The weighted least squares and maximum likelihood estimation 

procedures can be used to estimate the parameters of the logistic response function.  

 For estimation purposes, consider Equation (2.2.5), that is  

 

   Li  = ln (  πi 
1+πi  

) 

    = ∑ ��X()        (2.2.6) 

 In estimating the above equation, Logit , Li depends on the two types of  data 

which are categorized by 

(1)  data at the individual, or micro level, and 

(2) grouped or replicated data  

 

Individual data 

Let �i = 1 if  the event occurs 

 �i = 0 if  the event does not occur. 

If these values put directly into the logit Li, it is obtained as  

 Li = ln  ( 
�
8
) if an event occurs 

 Li = ln  ( 
8
�
) if an event does not occur.  

 Obviously, these expressions are meaningless. Therefore, if the data are 

situated at the micro, or individual level, the model cannot be estimated by the 

standard OLS routine. In this situation, maximum likelihood method can be used to 

estimate the parameters. This method is well suited to deal with the problems 

associated with the responses Yi being binary. Instead of using the normal distribution 

for the binary random variable Y, Bernoulli distribution will be used to develop the 

joint probability function of the sample observations.  

 Since each Yi observation is an ordinary Bernoulli random variable, where; 

  P(Yi  =  1) = �i 

  P(Yi  =  0) =1- �i 

 

 It's probability distribution is represented as follows; 

 

 fi (Y i) = ��
��(1- ��)�,9� ;  Y i = 0, 1, ; i =1…….,n  (2.2.7) 
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Here,  fi(1)  = �i  and 

  f i (0) = (1- �i) 

 Hence, fi(Y i) simply represents the probability that Yi = 1 or 0 

 Since the Yi observations are independent, their joint probability function is; 

 

  g(Y1,……….,Yn)  = ∏;
�<�    fi (Yi) 

     = ∏;
�<�   ��

�� (1- ��)�,9�  (2.2.8) 

 Again, it will be easier to find the maximum likelihood estimates by working 

with the logarithm of joint probability function: 

 

Logeg(Yi,……….,Yn) = loge∏        �/
9�;

�<�  ( 1-  �/)
�,9� 

    

= loge∏ ( �/  
1+�/  

)�/;
�<� (1-  ��) 

    

= ∑;
�<� Yi loge (

�/  
1−�/  

)  + ∑ log�
;
�<�  (1-  ��)  (2.2.9) 

 Since E(Yi) =  �� for a binary variable, it follows from Equation (2.2.1), and 

according to Equation (2.2.5), the above Equation (2.2.9) can be expressed as follows: 

LogeL(�) = ∑ Y(
;
�<�  (∑ �����) - ∑ log�

;
�<�  [1+exp(∑ �����)]  (2.2.10) 

where L(�) replaces g(Y1,……….,Yn) to show explicitly that function can be viewed 

as the likelihood function of the parameters to be estimated, given the sample 

observation.  

Equation (2.2.10) can be expressed more clearly as follows; 

 

 Log(L(�))  = ∑ Y(
;
�<�  log( ��) + ∑ (1 −;

�<� ��) log (1 −  ��)   

   = ∑ Y(
;
�<�  log(F(��

C�))+ ∑ (1 −;
�<� ��) log (1 − (F(��

C�)) 

   = ∑ log;
�;��<8  (1-F(��

C�))+ ∑ log;
�;��<�  (1 − (F(��

C�))  (2.2.11) 

 

 The maximum likelihood estimates of � in the logistic regression model are 

those values of  �  that maximize the   log-likelihood function in Equation (2.2.10). No  
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closed-form solution exists for the values of � in Equation (2.2.10) that maximize the 

log likelihood function. There are many widely used numerical search procedures; one 

of these employs iteratively reweighted least squares.  

 Once the maximum likelihood estimates are found, these  values  are 

substituted into the response function in Equation (2.2.1) to obtain the fitted response 

function.  

 The fitted logit model is as follows; 

  ��F   = 
� !(∑ G#$�#)

�%� !(∑ G#$�#)
      (2.2.12) 

 If the logit transformation is utilized in Equation (2.2.5), the fitted response 

function in Equation (2.2.11) can be expressed as follows; 

  H��   = ∑ I����      (2.2.13) 

where, 

  H��   = In( 
JKL

(�,JK)L
)      (2.2.14) 

 Once the fitted logit model has been obtained, the usual next steps are to 

examine the appropriateness of the fitted response function and , if the fit is good, to 

make a variety of inferences and predictions.  

 

Grouped or replicated data 

let  Ni = total number of observations 

 ni = no. of possibility among the interest category (ni ≤ Ni) 

Therefore, �� can be estimated as  

  ��F   = 
ni

Ni 
  

that is, the relative frequency can be used as an estimate of the true �� 

corresponding to each Xi. If N i is fairly large, ��F  will be a reasonably good estimate of

π i
 

 Using the estimated ��F , the estimated logit can be obtained as 

  H��   = In 
JKL

�,JKL
 = ��O + ��OX i2 + �POX i3 +…+��OX ik 

 

which will be a fairly good estimate of the true logit Li if the no. of observations Ni at 

each Xi is reasonably large. 
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 If N i is fairly large and if each observation in a given X iis distributed 

independently as a binomial variable, then  

  ui ~ N [o, 
�

Q�J�(�,JR)
] 

that is, ui follows the normal distribution with zero mean and variance equal to 1/[Ni�i 

(1-�i)]. Therefore, as in the case of LPM the disturbance term in the logit model is 

hetroscedastic. Thus, instead of OLS the weighted lest squares (WLS) should be used . 

 For empirical purposes, replace the unknown �� by ��F  and use 

   
S2 =  
�

Q�JKL(�,JKL)
   as estimator of 
2 

 

 To resolve the problem of heteroscedasticity, Equation (2.2.6) can be 

transformed as ] 

TW(L(  = ��√Wi + ��√WiX1i + �P√WiX2i+ ………+ ��√WiXki + TW(u( (2.2.15) 

L�
∗  = ��√Wi +  ��X2/

∗ + �PX3/
∗ +……….+ ��X\/

∗ + Vi       (2.2.16) 

where the weights Wi = Ni��F (1-��F ); 

 L�
∗    = transformed or weighted Li; X�

∗ = transformed or weighted Xi; and  

 vi = transformed error term.  

Now, the transformed error term vi is homoscedastic. Estimate Equation (2.2.14) by 

OLS recall that WLS on the transformed data.  

 

2.3 Probit Model 

 The model that emerges from the normal cumulative distribution function 

(CDF) is popularly known as the probit model, although sometimes it is also known as 

the normit model.  

 

2.3.1 Functional Form 

 To motivate the probity model, assume that the decision of an event will occur 

or not depends on an unobservable utility index Ii, that is determined by one or more 

explanatory variables, in such a way that the larger the value of the index Ii, the greater 

the probability of occurrence of an event.  

 The index Ii can be expressed as 

 

  Ii =  ∑ �����       (2.3.1) 
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Let Yi  = 1 if the event occurs and 

  = 0 if the event does not occur. 

 Now it is reasonable to assume that there is a critical or threshold level of the 

index, call it I�
∗  such that if Ii exceeds I�

∗, the event will occur, otherwise it will not. 

The threshold, I�
∗, like Ii, is not observable, but it is assumed to be normally distributed 

with the same mean and variance it is possible not only to estimate the parameters of 

the index given in Equation (2.3.1) but also to get some information about the 

unobservable index itself.  

 Under the assumption of normality, the probability that I�
∗ is less than or equal 

to Ii can be computed from the standard normal cumulative distribution function. That 

is,  

�i =P(Y = 1∣ X) = P (I�
∗ ≤ Ii) = P(Zi ≤  ∑ �����) = F ( ∑ �����)  

       = F (x�
∗�)  (2.3.2) 

 where P(Y = 1∣ X) means the probability that an event occurs given the value 

(s) of the X, or explanatory variable(s), i.e Z~(0, 
2). 

 F is the standard normal cumulative distribution function. The functional form 

of the probity model in two- variable case is.  

 F(Ii)  = 
�

√�J
 _ -

,2�
�`2ab�

,c  

 

  = = 
�

√�J
 _ -,2�

�a∑ "#$�#
,c      (2.3.3) 

where 

        Ii = ∑ ����� 

 

  = unobservable utility index (latent variable) 

 To obtain information on Ii, the utility index, as well as on � take the inverse of 

Equation (2.2.3) to obtain: 

   Ii = F-1 (Ii) 

      = F-1( ��) 

      = ∑ ����� 

 

 Where F-1 is the inverse of the normal cumulative distribution function.  
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2.3.2 Estimation 

 Once the estimated Ii was obtained, estimating � are relatively straightforward. 

Since the normal equivalent deviate (n.e.d) or Ii will be negative whenever �� < 0.5, in 

practice the number 5 is added to the n.e.d and the result is called a probit. Probit 

model is also constructed by assuming that a particular density underlies the data. 

Hence, this model is typical estimated using maximum likelihood rather than least 

squares.  

 Data for the probit model may also be two types. They are  

 (a) grouped data and 

 (b) ungrouped or individual data  

 As in the case of the logit model, a nonlinear estimating procedure based on the 

method of maximum likelihood can be used to estimate the probit model.  

 

2.4 Comparison of the Models  

In the LPM, the slope coefficients measure directly the change in the 

probability of an event occurring as the result of a unit change in the value of a 

regressor, with the effect of all other variables held constant. In the logit model the 

slope coefficient of a variable gives the change in the log of the odds associated with a 

unit change in that variable, again holding all other variables constant. But as noted 

previously, for the logit model the rate of change in the probability of an event 

happening is given by �j ��(1-  ��), where �jis (the partial regression) coefficient of the 

j th regrerssor. But in evaluating ��, all the  variables included in the analysis are 

involved.  

In the probit model, the rate of change in the probability is somewhat 

complicated and is given by �jf(Z i) where f(Zi) is the density function of the standard 

normal variable and  ∑ �����, that is, the regression model used in the analysis.  

Thus, in both logit and probit models all the regressors are involved in 

computing the changes in probability, whereas in the LPM only the jth regressor is 

involved. This difference may be one reason for the early popularity of the LPM 

model. One advantage of the LPM over logit or probit is that estimates of coefficients 

are available under complete or quasi complete separation.  

 



16 

 

 

 The linear probability model has disadvantage. It places implicit restrictions on 

the parameters �, as P(Yi = 1) = E (Yi) = x�
C� requires that 0≤ x�

C� ≤1 for all i = 

1,……..,n. Further, the error terms ui are not normally distributed. This is because the 

variable yi can take only the values zero and one, so that ui is a random variable with 

discrete distribution given by  

  ui = 1  -  x�
C� with probability x�

C� 

  ui = -x�
C� with probability 1-x�

C�. 

 The distribution of ui depends on xi and has variance equal to Var (ui) = x�
C�(1-

x�
C�), so that the error terms are heteroskedastic with variances that depends on �. The 

assumption that E (ui) = 0 implies that OLS is an unbiased estimator of � (provided 

that the regressors are exogenous), but clearly it is not efficient and the conventional 

OLS formulas for the standard errors do not apply. Further, if the OLS estimates b are 

used to compute the estimated probabilities ef [yi=1] = x�
CI, then this may give 

valuessmaller than zero or larger than one, in which case they are not real 

'probabilities'. This may occur because OLS neglects the implicit restrictions 0≤

x�
C� ≤1. 

 In most applications logit and probit models are quite similar, the main 

difference being that the logistic distribution has slightly fatter tails. That is to say, the 

conditional probability ��approaches zero or one at a slower rate in logit than in probit. 

Therefore, there is no compelling reason to choose one over the other. In practice 

many researchers choose the logit model because of its comparative mathematical 

simplicity.  

 Though the models are similar, one has to be careful in interpreting the 

coefficients estimated by the two models. The reason is that, although the standard 

logistic (the basis of logit) and the standard normal distributions (the basis of probit) 

both have a mean value of zero and their variances are different;1 for the standard 

normal and �
�

3a for the logistic distribution , where � ≈ 22
7a . Therefore, if the probit 

coefficient is multiplied by about 1.81(which is approximately = �
√3a , the logit 

coefficient will be got approximately.  

 Incidentally, Amemiya (1981) has also shown that the coefficients of LPM and 

logit models are related as follows: 
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   βLPM = 0.25 βLogit  except for intercept  

and 

   βLPM = 0.25 βLogit + 0.5 for intercept  

 Amemiya also suggested multiplying a logit estimate by 0.625 to get a better 

estimate of the corresponding porbit estimate. Conversely, multiplying a probit 

coefficient by 1.6 (=1/0.625) gives the corresponding logit coefficient.  
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CHAPTER III 

 

DIAGNOSTIC STATISTICS FOR QUALITATVE RESPONSE MODEL S 

 

 Some diagnostic statistics for qualitative response models namely, t-test (Z-

test), the predictive quality (classification table and hit rate), and analysis of the 

residuals (in particular an LM test for heteroscedasticity), the likelihood ratio test and 

goodness-of-fit (R2) will be presented in this Chapter.  

 

3.1 Z statistic 

 The significance of individual explanatory variables can be tested by the usual 

t-test. The sample size should be sufficiently large to rely on the asymptotic 

expressions for the standard errors, and the t-test statistic then follows approximately 

the standard normal distribution. Since the method of maximum likelihood is generally 

a large sample method, the estimated standard errors are asymptotic. As a result, 

instead of using the t statistic to evaluate the statistical significance of a coefficient, 

(standard normal) Z statistic has to be used.  

 

3.2 Likelihood Ratio (LR) Statistic 

 To test the null hypothesis that all the slope coefficients are simultaneously 

equal to zero, the equivalent of the F test in the linear regression model is the 

likelihood ratio (LR) statistic. Under the null hypothesis, H0: β2 = β3=…= βk= 0; the 

LR statistic follows the X2 distribution with degree of freedom equal to the number of 

explanatory variables. That is,  

  2 Ln(L1 – L0) ~ X2
(k-1) 

 

where L0 is the likelihood function when all parameters except the intercept, are set to 

zero and L1 is likelihood  function of the model of interest. Sometimes this measures 

similar to the R2 of linear regression models. Joint parameter restrictions can be tested 

by the likelihood ratio test. 

 

3.3 R2 Statistic  

 A goodness-of-fit measure is a summary statistic indicating the accuracy with 

which   the   model   approximates the observed   data, like the R2 measure in the linear 
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regression model. In linear regression model, R2 is the most commonly used measure 

for assessing the discriminatory power of the model. R2 possesses three properties. 

First, it is standardized to fall in the range (0, 1), equaling 0 when the model affords no 

predicted efficacy over the marginal mean and equaling 1 when the model perfectly 

accounts for, or discriminates among the responses. Second, it is non decreasing in X, 

meaning that it cannot decrease as regressors are added to the model. Third, it can be 

interpreted as the proportion of variation in the response accounted for by the 

regression.  

 In the case in which the dependent variable is qualitative, accuracy can be 

judged either in terms of the fit between the calculated probabilities and observed 

response frequencies or in terms of the model's ability to forecast observed responses. 

Contrary to the linear regression model, there is not single measure for the goodness-

of-fit in qualitative response models and a variety of measures exists in nonlinear 

models.  

 Often, goodness-of-fit measures are implicitly or explicitly based on 

comparison with a model that contains only a constant as explanatory variable. A first 

goodness-of-fit measure defined by Amemiya (1981) is known as Pseudo-R2 which is 

formulated by 

  pseudo-R2 = 1- 
�

�%�(jklmR,jklmn) /o
  

 

where N denotes the number of observations.  

 An alternative measure suggested by McFadden (1974) is  

  McFadden R2 = 1-LogL�
LogL8

a  

 which is sometimes referred to as the likelihood ratio index. Like R2, R2
MCF 

also ranges between 0 and 1. 

 Another comparatively simple measure of goodness of fit is the count R2, 

which is defined as: 

 Count R2 = 
;p.pq rpss*rt us*`�rt�p;v 
wptcx ;p.pq pGv*syct�p;v  

 

 

 Since the regressand in the model takes a value of 1 or zero, the number of 

correct predictions can be counted. If the predicted probability is greater than 0.5, it is 

classified as 1, but if it is less than 0.5, it is classified as 0. 
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3.4 Predictive Quality 

 Alternative specifications of the model may be compared by evaluating 

whether the model gives a good classification of the data into the two categories yi = 1 

and yi=0. The estimated model gives predicted probabilities �S i for the choice yi = 1, 

and this can be transformed into predicted choices by predicting that �Si = 1 if �S i ≥ c 

and �SI = 0 if, �S i < c. The choice of c can sometimes be based on the costs of 

misclassification. In practice on often takes c = 1
2a  , or, if the fraction �S I of successes 

differs much from 50 per cent, one takes c = �S i . This leads to a 2x2 classification table 

of the predicted responses �Si against the actually observed responses yi. The hit rate is 

defined as the fraction of correct predictions in the sample. Formally, let wi be the 

random variable indicating a correct prediction – that is, wi= 1 if Yi = �SI and wi =0 if  

Y i ≠ �SI, then the hit rate is defined by h=
�
;
 ∑ |�

;
�<� . 

 In the population the fraction of successes is. If the prediction 1 with 

probability �� and 0 with probability (1-��) were randomly made, then a correct 

prediction is with probability q= �2 + (1- �)2. Using the properties of the binomial 

distribution for the number of correct random predictions, it follows that the 'random' 

hit rate hr has expected value E (hr) = E(w) = q and variance Var (hr) = Var (w) /n 

=q(1-q)/n. The predictive quality of the model can be evaluated by comparing hit rate 

h with the random hit rate hr. Under the null hypothesis that the predictions of the 

model are no better than pure random predictions, the hit rate h is approximately 

normally distributed with mean q and variance q(1-q)/n. Therefore, reject the null 

hypothesis of random predictions in favor of the (one-sided) alternative of better- than 

random predictions if  

 

   z = 
},~

T~(�,~)/;
 = 

;},;~

T;~(�,~)
 

 

is large enough (larger than 1.64 at 5 per cent significance level). In practice, q= �2 +    

(1- �)2 is  unknown and estimated by  �F 2  +  (1- �S)2, where is the  faction  of  successes   

in the sample. In the above expression for the z-test, nh is the total number of correct 

predictions  in the  sample and  nq  is  the  expected  number  of  correct  random  

predictions. 
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3.5 Analysis of Residuals 

3.5.1 Standardized Residuals and Consequences of Heteroskedasticity  

 The residuals ui of a binary response  model are defined as the differences 

between the observed outcomes yi and the fitted probabilities �S i. As the variance of yi 

(for given values of xi) is ��(1-��), the standardized residuals are defined by  

 

   ��
∗ = 

��,JKL

TJKL(�,JKL)
     (3.5.1) 

 

 A histogram of the standardized residuals may be used, to detect outliers. 

Further, scatter diagrams of these residuals against explanatory variables are useful to 

investigate the possible presence of heteroskedasticity. Heteroskedasticity can be due 

to different kinds of misspectfication of the model. It may be, for instance, that 

relevant explanatory variable is missing or that the function F is misspecified. In 

contrast with the linear regression model, where OLS remains consistent under 

heteroskedasticity, maximum likelihood estimators of binary response models become 

inconsistent under this kind of misspecification. For instance, if data generating 

process is a probit model but one estimates a logit model, then the estimated 

parameters and marginal effects are inconsistent and the calculated standard errors are 

not correct. However, as the differences between the probit function and the logit 

function are not so large, the outcomes may still be reasonably reliable.  

 

3.5.2 Likelihood Ratio Test for Heteroskedasticity 

 A formal test for heteroskedasticity can be based on the index model ��
∗ = 

��
∗�+ui. Until now it has been assumed that the error terms ui all follow the same 

distribution (described by F). As an alternative can be considered the model where all 

��/
� follow the same distribution F where 

 

  
�  =  �2�
&� 

with zi a vector of observed  variables. The constant term should not be included in 

this vector because the scale parameter of a binary response model should be fixed,  
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independent of the data. Assume that the density function f (the derivative of F) is 

symmetric – that is, f(t) = f(-t). It then follows that 

 

P[yi = 1] = [��
∗ ≥0] 

  = P [ui ≥ - ��
C�] 

  = P [(ui/
) ≥ - ��
C�/
] 

  = P [(ui/
) ≤ ��
C�/
] 

  = F (��
C�/ 
],so that 

   P[yi = 1] = F(��
C�/�2�

&�)    (3.5.2) 

 The null hypothesis of homoskedasticity corresponds to the parameter 

restriction Ho : � =0. This hypothesis can be tested by the LR-test. The unrestricted 

likelihood function is obtain from the log-likelihood by replacing the term  

  �� = F (��
C�) by �� = F (��

C�/�2�
&�). 

 

3.5.3 Lagrange Multiplier Test for Heteroskedasticity 

 Alternative is to use the LM-test, so that only the model under the null 

hypothesis (with � =0) needs to be estimated. By working out the formulas for the 

gradient and the Hessian of the unrestricted likelihood, it can be shown that the LM-

test can be performed as if Equation (3.5.2) were a non-linear regression model.  

 First estimate the model without heteroskedasticity – that is, under the null 

hypothesis that � =0. This amounts to estimating the model P (yi = 1)=F (��
C�) by ML. 

The residuals of this model are denoted by  

 

   ui = yi - ��F  

       = yi – F (��
C�) 

 As a second up step, regress the residuals ui on the gradient of the non-linear 

model P(yi = 1) = F (��
C�/�2�

&�), taking into account that the residuals are 

heteroskedastic. This amounts to applying (feasible) weighted least squares- that is, 

OLS after division    for the ith observation by the (estimated) standard deviation. The 

variance of the 'error  term' yi-�� is Var (yi - ��) = Var (yi) = ��(1-��). �� is replaced by 

��F  obtained in the first step,  so  that the weight of the  ith observation in  WLS is given 
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by 1/T��F (1 − ��F . Further, the gradient of the function F (��
C�/�2�

&�) in Equation (3.5.2) 

, when evaluated at �=0, is given by 

�� (
�
&"/���

&�)
��

 = f (��
C�) X, 

�� (
�
&"/���

&�)
��

 = - f (��
C�) ��

C�.. 

 

 Therefore, the required auxiliary regression in this second step can be written 

in terms of the standardized residuals as 

 

 u�
∗ = 

��,JKL

TJKL(�,JKL)
 = 

q (
�
&G)

TJKL(�,JKL)
 ��

C�1 + 
q (
�

&G)
�
&G

TJKL(�,JKL)
 .�

C�1 + ni.         (3.5.3) 

 

 Under the null hypothesis of homoskedasticity, there holds that LM = nR2nc, 

where nR2
nc denotes the non-centered R2-that is , the explained sum of squares of 

Equation (3.5.3) is divided by the non-centered total sum of squares  ∑ (��
∗)�;

�<� . As the 

regression in Equation (3.5.3) does not contain a constant term on the right-hand side, 

one should take here the non-centered R2 defined by R2nc = ∑(��
∗)�/∑(��

∗)�, where �S *
i 

denotes the fitted values of the regression in Equation (3.5.3). Reject the null 

hypothesis for large values of the LM-test, and under the null hypothesis of 

homoskedasticity (� = 0) it is asymptotically distributed as X2 (g), where g is the 

number of variables in Zi-that is , the number of parameters in �. 
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CHAPTER IV 

 

APPLICATION OF LINEAR PROBABILITY 

LOGIT AND PROBIT MODELS 

 

4.1 Introduction 

In this chapter, the application of linear probability,  logit and  probit models 

are demonstrated by survey data. The survey data used in this chapter are provided by 

Ma Moe Sandar Oo who collected the data for her Master of public Administration 

Thesis. The data were responses of the mother of 300 children under 3 years of age in 

Thingungyun Township. The weights of the children were assessed from the standard 

weight chart using by Township Health Center. There are four different colours (red, 

yellow, green, white) to present the condition of child's weight on this chart. Red 

colour represents the child's weight, which reflects the severe malnutrition. Yellow 

colour stands for moderate malnutrition of child's condition and green colour signifies 

as good condition. White colour zone shows another form of malnutrition which is 

known as over-eight child. In general, malnutrition can be defined as underweight in 

developing countries, which is a serious public health problem that has been linked to 

a substantial increase in the risk of morbidity and mortality. The term malnutrition 

refers to both over-nutrition and under-nutrition. Malnutrition is a general term for a 

medical condition caused by an improper or inadequate diet and nutrition. In This 

study, if child's weight colour is green, the child can be determined by nutrition, and if 

child's weight colour is yellow (or) red, the child can be determined by malnutrition. 

The white colour case is very rare in Myanmar. So, white colour case is omitted from 

this study.  

 Out of these collected information, mother's age, mother's education level and 

child's weight colour variable are used to develop the models. Mother's education 

levels are divided into 4 categories such as primary, middle, high, and graduate. 

Child's weight colour is divided into 3 categories such as green, yellow, and red. To 

estimate the models, mother's age and mother's education level are used as 

independent variables and child's weight colour is used as dependent variable.  
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4.2 Models for Child's Weight Colour 

 In construction the models, the variables are noted as: 

 

  Yi = 1 if child's weight colour is green 

   = 0 otherwise 

 MAGEi = mother's age 

 MEDUi = 1 if mother's education is primary school level 

   = 0 otherwise 

 MEDU2 = 1 if mother's education is middle school level  

   = 0 otherwise 

 MEDU3 = 1 if mother's education is high school level  

   = 0 otherwise 

 

 

The Linear Probability Model (LPM) 

 

 Y i =  β1 + β2 MAGEi + β3 MEDU1 + β4 MEDU2+ β5 MEDU3 + ui 

 

where ui is disturbance term and the unknown parameters β1, β2, β3, β4 and β5 in the 

LPM are estimated by using the weighted least squares method using Statistical 

Package for Social Science (SPSS). It is assumed that the variance of ui is proportional 

to the variable MAGEi. 

 

The Logit Model 

 The ligit model here can be written as; 

 Li = ln 
J�

�,J�
 = β1 + β2 MAGEi + β3 MEDU1 + β4 MEDU2+ β5 MEDU3 + ui 

where �� = the probability that child's weights colour is green 

1- �� = the probability that child's weight colour is not green 

 

The Probit Model 

 Assume that Ii = unobservable untility index (latent variable) 

            I�
∗ = critical or threshold level of the index 

 If I i exceeds I�
∗, the child's weight colour will be green , otherwise it will not.  
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 Ii = β1 + β2 MAGEi + β3 MEDU1 + β4 MEDU2+ β5 MEDU3 

 Ii = F-1 (Ii) 

  = F-1 (��) 

  = β1 + β2 MAGEi + β3 MEDU1 + β4 MEDU2+ β5 MEDU3 

where F-1 is the inverse of the normal cumulative distribution function (CDF). 

 

  �� = Pr (Y = 1/X) 

   =Pr ( I�
∗ ≤ Ii) 

   = F (β1 + β2 MAGEi + β3 MEDU1 + β4 MEDU2+ β5 MEDU3) 

 

 �� represents the  probability  that  child's weight colour is green , it is 

measured by the area of the standard normal curve from = 7to Ii. 

 The unknown parameters in the logit and probit models are estimated by using 

method of Maximum Likelihood and Enter Regression Method through computer 

software of (SPSS). 

 

4.3 Results 

 The estimated models and their results are described in this section. The 

estimated standard error (se) and computed p-values are shown in parentheses.  

 

Linear Probability Model  

Y��  =  1.079 -  0.009 MAGEi – 0.052 MEDUi – 0.009 MEDU2 + 0.139 MEDU3 

se     (0.044)        (0.003)     (0.094)  (0.065)  (0.083) 

P. values (0.000)     (0.001)      (0.580) (0.131)  (0.096) 

R2 = 0.146, �2 = 0.134,  count R2 = 0.76,  Pseudo R2 = 0.15, 

McFadden  R2 = 0.157,   F = 12.598 

 According to the p-values it van be said that the variable MEDUi and MEDU2 

are insignificant and the variables MAGEi and MEDU3 are significant at % level, and 

10% level, respectively. The insignificant variables MEDU1 and MEDU2 are dropped 

from the model and estimate the model for child's weight colour with the variable 

MAGEi  and MEDU3. 
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The re-estimated model is as follows: 

Y�� =  1.082 –  0.012 MAGEi +  0.217 MEDU3 

se (0.044)  (0.022)   (0.063) 

p.values (0.000) (0.000)   (0.000) 

R2 = 0.105, �2 = 0.102,  count R2 = 0.76,  Pseudo R2 = 0.141, 

McFadden  R2 = 0.15,   F = 34.87 

  

 The results imply that the variable MAGEi and MEDU3 are important factors in 

explaining the changes of probability of child's nutrition . It can be said that if the 

mother's age increases by 1-year and being mother's education in high school level 

remained unchanged, the probability of child's nutrition will decrees by about 1.2% IF 

the mother's education is in high school level and being mother's age remained 

unchanged, the probability of child's nutrition will increase by 21.7%.  

 

Logit Model 

L��     = In 
JF

�,JF
 

 = 11.146 -  0.248 MAGEi – 2.657 MEDUi – 3.029 MEDU2 + 0.268 MEDU3 

se  (1.768)  (0.044)  (1.134)  (1.052)  (1.271) 

p.values (0.000)  (0.000)  (0.019)  (0.004)  (0.833) 

count R2 = 0.79 , pseudo R2 = 0.102,  McFaddenR2 = 0.211,  x2 = 64.241 

 

 According to the p.values it can be said that each variable, except MEDU3 is 

significant at 1% level and X2 = 64.241 indicates that the whole model is highly 

significant . The insignificant variable MEDU3 is excluded from the model and 

estimate the model for child's weight colour with the variables MAGEi , MEDUi, and 

MEDU2. The re-estimated model is as follows; 

 L��     = ln 
JF

�,JF
 

 = 10.986 -  0.248 MAGEi – 2.488 MEDUi – 2.86 MEDU2  

se  (1.577)  (0.044)  (0.765)  (0.693)   

p.values (0.000)  (0.000)  (0.001)  (0.000)   

count R2 = 0.62 , pseudo R2 = 0.187,  McFaddenR2 = 0.211,  x 2 = 69.195 
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 From the re-estimated ligit model, MAGEi, MEDU1 and MEDU2 are found to 

be important factors in explaining the changes of the log of odds for child's nutrition. It 

can be found that being other factors remained unchanged, with an increase of 1-year 

of mother's age, there is an expectation of decrease in the log of odds for child's 

nutrition about 0.25. Moreover, if the mother's education is in primary school level, it 

is expected to have a decrease of 2.488 and if the mother's education is in middle 

school level, it is expected to have a decrease of 2.86, in the log of odds for child's 

nutrition, respectively.  

 

Probit Model 

 I�i= -2.658 -  0.002 MAGEi + 0.103 MEDUi + 0.017 MEDU2 + 0.050 MEDU3 

se  (0.164)  (0.005)  (0.098)  (0.079)  (0.056) 

p.values (0.000)  (0.763)  (0.291)  (0.826)  (0.446) 

count R2 = 0.76 , x 2 = 101.624 

 

 According to the p. values it can be said that the all variables are insignificant 

at 1% and 10% level.  

 In summarizing the results and findings of estimated models, the diagnostic 

statistics such as p-values, computed F-values and computed X2 values indicate that 

the LPM and logit model are found to be significant models.  

 From the estimated LPM and logit models the variable mother's age and 

mother's education are important factors in explaining the changes of child's nutrition.  

 For the estimated models, the count R2 value is high, whereas the McFadden R2 

vale and pseudo R2 are low. Although these R2 values are not directly comparable, 

they can give some idea about the orders of magnitude. Besides, one should not 

overplay the importance of goodness of fit in models where the regressand is 

dichotomous. The estimated R2 may seem rather low, but in view of the large sample 

size, this R2 is still significant on the basis of the F test.  

 

 

 

 

 



29 

 

 

CHAPTER V 

 

CONCLUSION 

 

 In this paper, qualitative response models: linear probability, logit, and probit 

models in which the dependent variable involves only two qualitative choices are 

studied together with their specification and estimation procedure. These models are 

valuable in the analysis of survey data. The important characteristics of this study are 

as follows: 

1. Qualitative response regression models refer to models in which the response, 

or regressand, variable is not quantitative or an interval scale.  

2. The simplest possible qualitative response regression model is the binary 

model in which the regressand is of the yes/no or presence / absence type.  

3. The simplest possible binary regression model is the linear probability model 

(LPM) in which the binary response variable is regressed on the relevant 

explanatory variables by using the standard OLS methodology. Simplicity may 

not be a virtue here, fore the LPM suffers from several estimating problems. 

Even if some of the estimation problems can be overcame, the fundamental 

weakness of the LPM is that it assumes that the probability of something 

happening increases linearly with the level of the regressor. This very 

restrictive assumption can be avoided by using the logit and probit models.  

4. In the logit model the dependent variable is the log of the odds ratio, which is a 

linear function of the regressors. The probability function that underlies the 

logit model is the logistic distribution. If the data are available in grouped form, 

OLS can be used to estimate the parameters of the logit model, provided the 

heteroscedastic nature of the error term is taken into account explicitly. If the 

data are available at the individual, or micro level, nonlinear-in-the-parameter 

estimating procedures, like as method of maximum likelihood can be used.  

5. If the normal distribution is chosen as the appropriate probability distribution, 

then the probit model can be used. This model is mathematically a bit difficult 

as it involves integrals. 

6.  The estimated model can be interpreted in terms of the signs and significance 

of the estimated coefficient. The model can be evaluated in different ways, by 
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using diagnostic tests (t or Z-test, LR-test) and by measuring the model quality 

(goodness of fit R2). 

As an application, these models are developed and estimated by using SPSS 

computer software with the survey data of the mother of 300-children in Thingungyun 

Township. 

The findings are as follows: 

(1) According to the computed F value and X2 value, the LPM and logit models 

are significant but probit is not. 

(2) IN the estimated LPM, it can be concluded that the variables mother's age and 

mother's education are found to be important factor in explaining the child's 

nutrition. From the estimated model, being other factors remained unchanged, 

an increase in the mother's age of 1-year will decrease the probability of child's 

nutrition by about 1.2%.  

(3) In the estimated logit model, it can be said that the mother's age and mother's 

education are found to be important factors in explaining the child's nutrition 

From the estimated model, being other factors remained unchanged, an 

increase in the mother's age of 1-year will decrease the odds for child's 

nutrition by about 22%. If the mother's education is in primary school level, it 

is expected to have an decrease about 92%, if the mother's education is in 

middle school level, it is expected to have a decrease about 94% in the odds for 

child's nutrition, respectively.  
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