YANGON INSTITUTE OF ECONOMICS
DEPARTMENT OF STATISTICS

LINEAR PROBABILITY,LOGIT AND PROBIT
MODELSIN QUALITATIVE DATA ANALYSIS

THIDA THAN
M. Econ (Statistics)
(Roll No. 1)

MARCH 2010



CONTENTS
ACKNOWLEDEGMENTS
ABSTRACT
ABBREVIATIONS
Chapter Page
Chapter | INTRODUCTION 1
Chapter I MODEL SPECIFICATION AND ESTIMATION 3
2.1 Linear Probability Model (LPM) 3
2.1.1 Function Form 3
2.1.2 Examination of the Assumption ¢f u 3
2.1.3 Estimation 5
2.2 Logit Model 7
2.2.1 Functional Form
2.2.2 Features 8
2.2.3 Estimation 9
2.3 Probit Model 13
2.3.1 Functional Form 13
2.3.2 Estimation 14
2.4  Comparison of Models 15
Chapter 111 DIAGNOSTIC STATISTICSFOR QUALITATIVE 17
RESPONSE MODEL S
3.1 Z Statistic 17
3.2 Likelihood Ratio (LR) Statistic 17
3.3 R Statistic 17
3.4  Predictive Quality 19
3.5 Analysis of Residuals 20

3.5.1 Standardized Residuals and Consequences of

Heteroscedasticity

3.5.2 Likelihood Ratio Test for Heteroscedastici

3.5.3 Largrange Multiplier Test for
Heteroskedasticity



Chapter

Page

Chapter IV APPLICATION OF LINEAR PROBABILITY,LOGIT 23

Chapter V

AND PROBIT MODELS

4.1 Introduction 23
4.2 Models for Child's Weight Colour 23
4.3 Results 25
CONCLUSION 28

REFERENCES 30



CHAPTER 1
INTRODUCTION

There are several methods for measuring the eakttip among economic
variables. The simplest methods are correlationyaisaand regression analysis.
Regression analysis was first developed by Sirdtsa@alton who was a well known
British anthropologist and meteorologist in thedatpart of the 18 century. It is a
statistics methodology that utilizes the relati@tween two or more variables so that
one variable can be predicted from the other, berst This methodology is widely
used in businesses, social and behavioral sciebiméggical sciences, and many other
disciplines.

Many regression models in which the regressamddépendent variable, or the
response variable, say Y, is quantitative, whetkasexplanatory variables are either
guantitative (or dummy), or a mixture thereof. Imah research work, the researchers
often face situations where the dependent variabieterest is a qualitative in nature.
The dependent variable of interest or regressanuag, be two or three or multiple
possible qualitative outcomes. The models in whibbe dependent variable or
regressand, Y, is qualitative variable are calledlitative response models. These
models are valuable in the analysis of survey dait@. simplest possible qualitative
response regression model is the binary model ikchwie regressand, has only two
possible qualitative outcomes, and therefore camrepeesented by a binary indicator
variable taking on values 0 and 1. So the regressam be said that a binary or
dichotomous variable and the models developed doh situations are called binary
response models.

Both theoretical and empirical considerations gsgghat when the response
variable is binary, the shape of the response imatill frequently be curvilinear.
The shape of this response function is a titled &soa reverse titled S, and they are
approximately linear except at the ends. Theseorespfunctions are often referred to
as sigmoidal.

In a model where Y is quantitative, the objeciw¢o estimate its predicted, or

mean value given the values of the regressors,igsh&(Y; \ X1i, Xoiy X3iyernns Xki)s

where the X's are regressors, may be quantitativgualitative or both. In models

where Y is qualitative, the objective is to finetprobability of something happening.



Hence, qualitative response regression modelsfame known as a type of probability
models. Qualitative response models have been sx&y used in biometric
applications for a much longer time than they hased in economic applications.
Among the qualitative response models, linear g@iodhy, logit and probit
(also known as normit) models are studied in tlapgp. The objectives of this paper
are to study;
(1) how to develop the qualitative response models;
(2) how to estimate the qualitative response models;
(3) how to evaluate the qualitative response models;
Firstly, the natures of qualitative response modedsintroduced in Chapter 1.
The specification and estimation procedure of thalitpative response models are
discussed in Chapter Il. Then, in Chapter Ill, desgfic statistics for qualitative
response models are discussed and, the applicatiotisze models are studied in
Chapter IV. Finally, the important characteristiok the models and findings are

summarized in Chapter V.



CHAPTER I
MODEL SPECIFICATION AND ESTIMATION
In this Chapter some of the qualitative responselets are considered for a
binary response variable. Among the binary respomséels, linear probability, logit,

and probit (normit) models are discussed in thie¥ahg sub-sections.

21 Linear Probability Model (LPM)
2.1.1 Functional Form

The functional form of a linear probability modelrcbe expressed as

Yi=B1+ B2 Xi+u (2.1.1)
where Y= 1if the event occurs and
= 0 if the event does not occur

B1 and B; are regression coefficients; i a random error term.;Xs the
predictor variable.

It can be extended to more than one predictornibei
That is,

Yi= Bl+ Bz Xio + BSXi3+ .............. + Bk Xik + U (2.1.2)
Y =XB+u (2.1.3)

Assume that the model contains a constant terat, i) X; = 1 for all
individuals. The regression coefficient is intetpck in terms of the probability of
being in the interest category on Y. Henggrepresents the change in he probability

for each unit increase in; Yhet of the other covariates, and so on.

2.1.2 Examination of the Assumption of u
Assuming E(1) = 0, the conditional expectation of fven X is obtained as:

E(Yi|Xi)= Br + B2Xiz + BaXig+..oovienn + Bk Xik = X BrX; (2.1.4)
=XB
If m; is the probability that =1 (that is, the event occurs), and (rd)-is the
probability that Y = O (that is, the event does not occur), thenviréeable Y follows

Bernoulli probability distribution. The expectatiofhY is obtained as



E(Yi) =1.m1;+0 (l-T[i) =TT (2.1.5)
=Pr (Y:l)

Comparing Equation (2.1.4) with Equation (2.1tBg conditional expectation
of the model (2.1.2) can be interpreted as theitiondl probability of Y. That is,

E (Yi|Xi) = B]_ + Bzxi2+ ngig Fo + Bk Xik

= Pr (Y=1)

Since the probability; must lie between 0 and 1, this is a restriction.
That is, X E (Yi|Xi) <1.

Then the disturbances)\also take only two values; that is , they follthve
Bernoulli Distribution.

Yi U Pr ()
1 1-XB i
2 -XPB 1-m

1

Obviously,y cannot be assumed to the normally distributedfdahew the
Bernoulli distribution. The OLS point estimatorglsemain unbiased. Besides, as the
sample size increases indefinitely, statisticabthieshows that the OLS estimators
tend to be normally distribute generally .As a tgsn large samples the statistical
inference of the LPM will follow the usual OLS pexture under the normality
assumption.

Even if E(4¥) = 0 and Cov (yu) =0 fori £ (i.e., no serial correlation),aan
no longer be maintained that in the LPM the distades are homoscedastic.

As statistical theory shows that for a Bernouliitdbution the theoretical mean
and variance are, respectivety,and (1-m;), wherem, is the probability of success
(i.e., something happening) showing that the vaeas a function of the mean. Hence

the error variance is heteroscedastic. The variahd®e error term is

Var (u) =m (1-m).



That is, the variance of the error term tiee LPM is heteroscedastic.

Sincemn; = E (Y] ] Xi) =Y Bk Xik the variance of jwltimately depends on the values

of X and hence is not homoscedastic.

2.1.3 Estimation
For a model with heteroscedastic error disturbsiitcean be assumed that each
error term uis normally distributed with varianeg?, where the variance Varju= E

u?) = o

IS not constant over observations. When heterestetdy is present,
ordinary least squares estimation places more weighthe observations with large
error variances than on those with small error ararés. In the presence of
heteroscedasticity, the OLS estimators, althoughiased, are not efficient; that is,
they do not have minimum variance. If the heterdasécity is present, the
appropriate estimation technique is the weightestlsquares estimation procedure,
which can be derived from the maximum likelihooddtion.

Consider the simple linear probability model
Yi =B1+B2Xi+ U ; where V (i) = of. (2.1.1)

By minimizing the expression where the originaiables are written in

deviation form, the appropriate estimation can bb@ioed as

5 _ Yxiyi/of
ﬁ il T4 Yt 5

2,2
Y xi/o;

— X(xi/o)(Vijoi)
Y(xi/0;)?

_ XXy

ICHE

X, .
wherex; ==,y = 2
i i

To use weighted least-squares, the variablesiotiginal regression model of
Equation (2.1.1) are redefined as;
Xi

Vi =E X =y =2

o O Oj



N =

where Var{¢}) = Var e) =— Var (u)

(o

~h

R

Now, the new error term is homoscedastic.

Since there are many situations in which the iredatagnitude of the error
variances is not known, it is important to considpecial cases in which sufficient
sample information is available to make reasongbésses of the true error variances.

One possibility is the existence of existence aélationship between the error
variances and the values of explanatory variabkbénregression model. Specifically,
assume that

Var (u) = CX?

where C is a honzero constant andsXan observation of the independent variable in
the linear probability model.
If the variances are unknown, the variables in #beve equation can be

transformed as;

= Yoyt = 2 ==
Yi_ XL"XI x'lu

Where Var ) = Var (%)

Now, error termu; is homoscedastic.
The LPM is plagued by problems, such as
(1) non — normality of u
(2) heteroscedasticity of u
(3) possibility ofY, lying outside the 0-1 range, and

(4) the generally lower Rvalues.



But these problems are surmountable.

As mentioned above, WLS can be used to resolvehtteroscedasticity
problem or increase the sample size to minimize rbe-normality problem. By
resorting to restricted least-squares or mathemalapcogramming techniques the
estimated probabilities can be made to lie in teifterval.

But even then the fundamental problem with the LiBNhat it is not logically
a very attractive model because it assumesmh=i (Y = 1[ X) increases linearly with
X, that is the marginal or increment effect of Xna&ns constant throughout.

Therefore, what we need is a (probability) motat has these two features;

(1) as X% increases 7 =E(Y = 1 X) increases but never steps outside the 0-1

interval , and

(2) the relationship between; and X is nonlinear, that is "one which

approaches zero at slower rates asyets small and approaches one at

slower and slower rates asgéts very large.

2.2 Logit Model

Both theoretical and empirical considerations ssgghat when the response
variable is binary, the shape of the response imatill frequently be curvilinear.
The response functions are shaped either as &titiea reverse titled S and that they
are approximately linear except at the ends. Thesponse functions are often
referred to as sigmoid. They have asymptotes atd0laand thus automatically meet
the constraints on E (Y).

The commonly used non-linear probability modeks lagit and probit models.
The two distributions most often employed are ttedard normal distribution and
the standard logistic distribution. The standardmrad distribution employed can be

called as probit and the standard logistic distidy as logit.

2.2.1 Functional Form

The simple logit model is expressed as

_ _exp X BrXik)
1+exp (X BrXik)




_ exp (x{B) (2.2.1)

= 1+exp (x{B)

Letting Z =Y. B Xix
_ eZi
= 1+eZi
_ 1
=— 2.2.2)

2.2.2 Features
The features of the logit model are as follows;
(1) Logistic regression effects can be expressed mdaf percent changes in
the odds. Odds ratios are useful in estimating g@bsuin the probability of
event occurrence with changes in predictors ongasaline probability has

been calculated.

Zi

TTj = ,
1+e%
1- i — 1 - ‘ -
1+e%
_ 1+efi— e
T 1+ed
=1 2.2.3
_1+ezi (22.3)
The ratio of Equation (2.2.2) to (2.2.3)
T[l ezi 1
=( 2.2.4
1+ \1+ezi) / (1+ezi) ( )
—e%

T can be called the odds ratio.
1+




Take the natural log of Equation (2.2.4)
L =1In (ﬁ)
=4
=2 BiXik (2.2.5)

The logit L goes frome to +a asmw goes from Otol. That is, although the

probabilities (of necessity) lie between 0 anchg, lbgits are not so bounded.

(2)

3)

(4)

(5)

(6)

Although L is linear in X, the probabilitieseimselves are not. This property is
in contrast with the LPM model where the probaiesitincrease linearly with
X.

If L, the logit, is positive, it means that whéhe value of the regressor (s)
increases, the odds that the regressand equaleahiimy some event of interest
happens) increases . It L is negative,the odds ttheatregressand equals 1
decreases as the value of X increases. To pufféreintly, the logit becomes
negative and increasingly large in magnitude astus ratio decreases from 1
to 0 and becomes increasingly large and positivéhasodds ratio increases
from 1 to infinity.

More formally, the interpretation of the logitodel given in Equation (2.2.4) is
as follows;f,, the slope, measures the change in L for a uaihgé in X. The
interceptf: is the value of the log odds in favor of occurreugy event if the
other event does not occur (or) is zero.

If we actually want to estimate not the oddsfavor of event but the
probability of event itself, this can be done dilgérom Equation (2.2.2) once

the estimates gf, andp, are available.
Whereas the LPM assumes timatis linearly related to X the logit model

assumes that the log of the odds ratio is lineaigted to X

2.2.3 Estimation

A logistic response function is either monotoniccreasing or

monotonic decreasing, depending on the sign ofslbpe coefficients. It can be

linearized easily. Logistic response functionse ltke other response functions which

have been considered are used for describing theenaf the relationship between

the mean response and one (or more) predictorblarig). They are also used for
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making predictions. The weighted least squaresmaximum likelihood estimation
procedures can be used to estimate the paramétéeslogistic response function.

For estimation purposes, consider Equation (2.2h8} is

L = (1::11 )

=2 BiXix (2.2.6)
In estimating the above equation, Logit; depends on the two types of data

which are categorized by
(2) data at the individual, or micro level, and

(2) grouped or replicated data

Individual data

Let = 1if the event occurs

TT; 0 if the event does not occur.

If these values put directly into the logit It is obtained as

L

1y .
In (5) if an event occurs

0y .
L; = In (I) if an event does not occur.

Obviously, these expressions are meaningless.efidrer if the data are
situated at the micro, or individual level, the rabdannot be estimated by the
standard OLS routine. In this situation, maximukelihood method can be used to
estimate the parameters. This method is well suiteddleal with the problems
associated with the responsesb¥ing binary. Instead of using the normal disttiidou
for the binary random variable Y, Bernoulli distrition will be used to develop the
joint probability function of the sample observato

Since each Yobservation is an ordinary Bernoulli random vdealwhere;

P(Y = 1) =m;

P(Y; = 0) =1-m;

It's probability distribution is represented adduis;

ey =mi(L-m) i, ¥i=0,1,;i=1.......,n (2.2.7)
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Here, f1) =m; and
fi (0) = (1-m;)
Hence, {(Y;) simply represents the probability that=¥1 or O
Since the Yobservations are independent, their joint proligiinction is;

(o[ £ TP Yn) = H?:l fi (Y5)
=My, m't (L-m)t Y (2.2.8)
Again, it will be easier to find the maximum liketiod estimates by working

with the logarithm of joint probability function:

1-Y;

Loged(Yiy.eeurvnnnsy Yy =log[[x,  m'i(1- m)

i \Yi
= log[ T} (137-) (- ;)

=3 Yiloge (2 3 tos. - m) (229

Since E(Y) = m; for a binary variable, it follows from Equation.221), and
according to Equation (2.2.5), the above Equat®®.9) can be expressed as follows:
LogeL(B) = Xit1 Yi (X BiXik) - Xizqloge [1+expl B X)) (2.2.10)
where L) replaces g(¥,.......... ,Yn) to show explicitly that function can be viewed
as the likelihood function of the parameters to dstimated, given the sample
observation.

Equation (2.2.10) can be expressed more cleafiyilasvs;

Log(L(B))  =Xi=qYilog(m;) + iz, (1 —Y;) log (1 — m;)
=Xz i log(FeiB))+ Xit, (1 = Y) log (1 — (F(x;))
=Xiy=0108 (1-Fer; )+ Xiy=1log (1 — (F(x;)) (2.2.11)

The maximum likelihood estimates gfin the logistic regression model are

those values of that maximize the log-likelihood function in Eation (2.2.10). No



12

closed-form solution exists for the valuesfoin Equation (2.2.10) that maximize the
log likelihood function. There are many widely usednerical search procedures; one
of these employs iteratively reweighted least sgslar

Once the maximum likelihood estimates are fourttgs¢ values are
substituted into the response function in Equatib@.1) to obtain the fitted response
function.

The fitted logit model is as follows;

~ _ exp(XbrXi)
L 1+exp(X kaik)

(2.2.12)

If the logit transformation is utilized in Equatiq2.2.5), the fitted response
function in Equation (2.2.11) can be expressedbons;

L, =Y b, X (2.2.13)
where,

L = |n((1’_T;ﬂ)) (2.2.14)

Once the fitted logit model has been obtained, ubeal next steps are to
examine the appropriateness of the fitted respéursgtion and , if the fit is good, to
make a variety of inferences and predictions.

Grouped or replicated data
let N = total number of observations
ni = no. of possibility among the interest categary<(N;)

Thereforer; can be estimated as

~ __ni
mw, ——
Ni

that is, the relative frequency can be used assimate of the truer;

corresponding to each; X N; is fairly large,, will be a reasonably good estimate of
71

Using the estimated,, the estimated logit can be obtained as

—

— T[ — — — —
L, = |n1__;?l =1 + B Xip + B3 Xz +... 40, Xik

which will be a fairly good estimate of the trugiloL; if the no. of observations Ni at

each Xis reasonably large.
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If N; is fairly large and if each observation in a giv&fs distributed
independently as a binomial variable, then
u ~ N [O,W]
that is, yfollows the normal distribution with zero mean aratiance equal to 1/,
(1-m;)]. Therefore, as in the case of LPM the disturleatezm in the logit model is
hetroscedastic. Thus, instead of OLS the weiglgstddquares (WLS) should be used .
For empirical purposes, replace the unknasyvby 77, and use

52 = ———— as estimator of?
N (1-T5y)

To resolve the problem of heteroscedasticity, Eqna(2.2.6) can be

transformed as |

JWiLi = B1A/W + Bon/WiXy; + Ban/WiXoit oo + BV WXy +/Wiy; (2.2.15)

L =B1AVW, + BoXoi+ BaXsiteunnnn.... + B X+ Vi (2.2.16)
where the weights W Ni7T,(1-7));

L; = transformed or weighted; X; = transformed or weighted;»and

Vi = transformed error term.

Now, the transformed error term 18 homoscedastic. Estimate Equation (2.2.14) by
OLS recall that WLS on the transformed data.

2.3  Probit Model
The model that emerges from the normal cumulathsribution function
(CDF) is popularly known as the probit model, althb sometimes it is also known as

the normit model.

2.3.1 Functional Form

To motivate the probity model, assume that thesigeiof an event will occur
or not depends on an unobservable utility indethht is determined by one or more
explanatory variables, in such a way that the latige value of the index, the greater
the probability of occurrence of an event.

The index jlcan be expressed as

li= X BrXik (2.3.1)
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Let Y, =1 if the event occurs and
= 0 if the event does not occur.

Now it is reasonable to assume that there istealrior threshold level of the
index, call itl; such that if | exceedd;, the event will occur, otherwise it will not.
The thresholdl;, like |;, is not observable, but it is assumed to be ndyndgdtributed
with the same mean and variance it is possibleonbyt to estimate the parameters of
the index given in Equation (2.3.1) but also to getne information about the
unobservable index itself.

Under the assumption of normality, the probabilitat; is less than or equal
to l; can be computed from the standard normal cumelatistribution function. That
is,
m=P(Y=1| X)=P (; <1)=P(Z< XBXu) =F (I BiXuc)

=F &;B) (2.32)

where P(Y = 1\ X) means the probability that an event occursmyihe value

(s) of the X, or explanatory variable(s), i.e Z~¢0).
F is the standard normal cumulative distributiondtion. The functional form

of the probity model in two- variable case is.

) _,2
FO) ==l e Vo

—__ 1 XBrXu —7°
=== 2T (2.3.3)

where

| =X BrXik

= unobservable utility index (latent variable)
To obtain information on,lthe utility index, as well as ghtake the inverse of
Equation (2.2.3) to obtain:
L= F* ()
= Fim)
=X BrXik

Where F is the inverse of the normal cumulative distribatfunction.
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2.3.2 Estimation

Once the estimateglwas obtained, estimating) are relatively straightforward.
Since the normal equivalent deviate (n.e.d) @il be negative whenever; < 0.5, in
practice the number 5 is added to the n.e.d andebalt is called a probit. Probit
model is also constructed by assuming that a pdatiadensity underlies the data.
Hence, this model is typical estimated using maxmmikelihood rather than least
squares.

Data for the probit model may also be two typdseyrare

(a) grouped data and

(b) ungrouped or individual data

As in the case of the logit model, a nonlineamesting procedure based on the

method of maximum likelihood can be used to esintla¢ probit model.

2.4  Comparison of the Models

In the LPM, the slope coefficients measure diredityy change in the
probability of an event occurring as the resultaolinit change in the value of a
regressor, with the effect of all other variableddhconstant. In the logit model the
slope coefficient of a variable gives the changthelog of the odds associated with a
unit change in that variable, again holding allesthariables constant. But as noted
previously, for the logit model the rate of changethe probability of an event
happening is given b, m;(1- m;), whereg;is (the partial regression) coefficient of the
ji™ regrerssor. But in evaluating;, all the variables included in the analysis are
involved.

In the probit model, the rate of change in the pholty is somewhat
complicated and is given f(Z;) where f(%) is the density function of the standard
normal variable and: 8, X;, that is, the regression model used in the arslysi

Thus, in both logit and probit models all the regm@s are involved in
computing the changes in probability, whereas m tPM only the t]‘ regressor is
involved. This difference may be one reason for ¢laely popularity of the LPM
model. One advantage of the LPM over logit or prabthat estimates of coefficients

are available under complete or quasi completeragpa.
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The linear probability model has disadvantageldtes implicit restrictions on
the parameterg, as P(Y = 1) = E (¥) = x;B requires that € x;8 <1 for all i =
1,........ ,n. Further, the error termsare not normally distributed. This is because the
variable y can take only the values zero and one, so thataurandom variable with
discrete distribution given by

u =1 -x;B with probabilityx; s
u = -x; 8 with probability 1x;p.

The distribution of udepends onjand has variance equal to Vay) @x;S(1-
x;B), so that the error terms are heteroskedastic wagittances that depends gnThe
assumption that E {u= 0 implies that OLS is an unbiased estimatof dprovided
that the regressors are exogenous), but clearsynbt efficient and the conventional
OLS formulas for the standard errors do not applyther, if the OLS estimates b are
used to compute the estimated probabilitRgy;=1] =x/b, then this may give
valuessmaller than zero or larger than one, in lWwhiase they are not real
‘probabilities’. This may occur because OLS negldébhe implicit restrictions €
x;f <1.

In most applications logit and probit models angitey similar, the main
difference being that the logistic distribution tslightly fatter tails. That is to say, the
conditional probabilityr;approaches zero or one at a slower rate in logit th probit.
Therefore, there is no compelling reason to chawse over the other. In practice
many researchers choose the logit model becausts ebmparative mathematical
simplicity.

Though the models are similar, one has to be waiaf interpreting the
coefficients estimated by the two models. The neasothat, although the standard
logistic (the basis of logit) and the standard nalratistributions (the basis of probit)

both have a mean value of zero and their variaacedifferent;1 for the standard

normal and’TZ/3for the logistic distribution , where = 22/7.Ther<~:fore, if the probit

coefficient is multiplied by about 1.81(which is papximately =7T/\/§, the logit

coefficient will be got approximately.
Incidentally, Amemiya (1981) has also shown that ¢oefficients of LPM and

logit models are related as follows:
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BLem = 0.25PBogit except for intercept
and
BLem = 0.25Bggit + 0.5 for intercept
Amemiya also suggested multiplying a logit estieny 0.625 to get a better
estimate of the corresponding porbit estimate. @wsely, multiplying a probit
coefficient by 1.6 (=1/0.625) gives the correspogdogit coefficient.
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CHAPTER IlI
DIAGNOSTIC STATISTICS FOR QUALITATVE RESPONSE MODEL S

Some diagnostic statistics for qualitative resgonsdels namely, t-test (Z-
test), the predictive quality (classification tatded hit rate), and analysis of the
residuals (in particular an LM test for heterosstiddy), the likelihood ratio test and
goodness-of-fit (B will be presented in this Chapter.

3.1 Z statistic

The significance of individual explanatory variablean be tested by the usual
t-test. The sample size should be sufficiently ear@ rely on the asymptotic
expressions for the standard errors, and the tstatistic then follows approximately
the standard normal distribution. Since the metbfathaximum likelihood is generally
a large sample method, the estimated standardseama asymptotic. As a result,
instead of using the t statistic to evaluate tlaistical significance of a coefficient,

(standard normal) Z statistic has to be used.

3.2 Likelihood Ratio (LR) Statistic
To test the null hypothesis that all the slopeffa@ents are simultaneously
equal to zero, the equivalent of the F test in lihnear regression model is the
likelihood ratio (LR) statistic. Under the null hyghesis, H: B2 =Bs=...=Bk= 0; the
LR statistic follows the X distribution with degree of freedom equal to thenter of
explanatory variables. That is,
2 Ln(Ls — Lo) ~ Xy

where g is the likelihood function when all parametersepicthe intercept, are set to
zero and L is likelihood function of the model of intereSlometimes this measures
similar to the R of linear regression models. Joint parameteriogisins can be tested
by the likelihood ratio test.

3.3 R Statistic
A goodness-of-fit measure is a summary statisiilicating the accuracy with
which the model approximates the observeata,dike the Rmeasure in the linear
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regression model. In linear regression modélisRhe most commonly used measure
for assessing the discriminatory power of the mo&@Ipossesses three properties.
First, it is standardized to fall in the range 1}, equaling 0 when the model affords no
predicted efficacy over the marginal mean and eqgal when the model perfectly

accounts for, or discriminates among the respor&asond, it is non decreasing in X,
meaning that it cannot decrease as regressorsideel @0 the model. Third, it can be
interpreted as the proportion of variation in thesponse accounted for by the
regression.

In the case in which the dependent variable iditqtise, accuracy can be
judged either in terms of the fit between the clalimd probabilities and observed
response frequencies or in terms of the modellgyatm forecast observed responses.
Contrary to the linear regression model, thereoissngle measure for the goodness-
of-fit in qualitative response models and a variefymeasures exists in nonlinear
models.

Often, goodness-of-fit measures are implicitly explicitly based on
comparison with a model that contains only a cornista explanatory variable. A first
goodness-of-fit measure defined by Amemiya (198 Bniown as Pseudo?Rvhich is

formulated by

1
1+2(logL;-logLy) /N

pseudo-R= 1-

where N denotes the number of observations.
An alternative measure suggested by McFadden 1974

_ . LogL
McFadden R= 1--°8 /LogLe

which is sometimes referred to as the likelihoatiorindex. Like R, Rivcr
also ranges between 0 and 1.

Another comparatively simple measure of goodndsfitds the count R
which is defined as:

no.of correct predictions

Count R =

Total no.of observations

Since the regressand in the model takes a valude afzero, the number of
correct predictions can be counted. If the predigiobability is greater than 0.5, it is

classified as 1, but if it is less than 0.5, itl=ssified as 0.
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3.4  Predictive Quality

Alternative specifications of the model may be camgpl by evaluating
whether the model gives a good classification efdhta into the two categories=yl
and y=0. The estimated model gives predicted probaddliti for the choice y= 1,
and this can be transformed into predicted chdigepredicting thaty; = 1 if 7; > ¢
and y, = 0 if, T; < c. The choice of ¢ can sometimes be based on dkts ©f

misclassification. In practice on often takes &/, or, if the fraction?; of successes

differs much from 50 per cent, one takes @ =This leads to a 2x2 classification table
of the predicted respons@sagainst the actually observed responseshe hit rate is
defined as the fraction of correct predictions he sample. Formally, let;vbe the
random variable indicating a correct predictiorhattis, w= 1 if Y; =, and w =0 if
Yi# 3, then the hit rate is defined byiﬁ?:l w;.

In the population the fraction of successes is.thé prediction 1 with
probability 7; and O with probability (Ir;) were randomly made, then a correct
prediction is with probability g=r? + (1-7)% Using the properties of the binomial
distribution for the number of correct random po#idns, it follows that the 'random’
hit rate h has expected value E,\l= E(w) = g and variance Var Jh= Var (w) /n
=q(1-qg)/n. The predictive quality of the model daevaluated by comparing hit rate
h with the random hit rate,..nUnder the null hypothesis that the predictionghef
model are no better than pure random predictioms, hit rate h is approximately
normally distributed with mean g and variance qftxgTherefore, reject the null
hypothesis of random predictions in favor of theg®ided) alternative of better- than

random predictions if

7= h—q _ nh-nq
va-@/n  Jnq(1-q)

is large enough (larger than 1.64 at 5 per cemifgignce level). In practice, & +
(1-7)%is unknown and estimated By + (1-7)?% where is the faction of successes
in the sample. In the above expression for thesg-téh is the total number of correct
predictions in the sample and] is the expected number of correct random

predictions.
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3.5  Analysis of Residuals
3.5.1 Standardized Residuals and Consequences oftéteskedasticity

The residuals juof a binary response model are defined as tHherdiices
between the observed outcomesiyd the fitted probabilities;. As the variance ofjy

(for given values of }ism;(1-;), the standardized residuals are defined by

* J/i_ﬁ:\l
U; e ) (3.5.1)

A histogram of the standardized residuals may seduto detect outliers.
Further, scatter diagrams of these residuals agexmanatory variables are useful to
investigate the possible presence of heteroskedgstieteroskedasticity can be due
to different kinds of misspectfication of the madél may be, for instance, that
relevant explanatory variable is missing or that thnction F is misspecified. In
contrast with the linear regression model, whereSOlemains consistent under
heteroskedasticity, maximum likelihood estimatdrioary response models become
inconsistent under this kind of misspecificatioror Hnstance, if data generating
process is a probit model but one estimates a Ilogitlel, then the estimated
parameters and marginal effects are inconsistaehtta calculated standard errors are
not correct. However, as the differences betweenpitobit function and the logit

function are not so large, the outcomes may silldasonably reliable.

3.5.2 Likelihood Ratio Test for Heteroskedasticity

A formal test for heteroskedasticity can be basedh® index modey; =
x; B+u. Until now it has been assumed that the error deyrall follow the same
distribution (described by F). As an alternativa && considered the model where all

u;/o; follow the same distribution F where

o; = uzily
with z a vector of observed variables. The constant s&rould not be included in

this vector because the scale parameter of a bieappnse model should be fixed,



22

independent of the data. Assume that the densitgtifon f (the derivative of F) is
symmetric — that id(t) = f(-t). It then follows that

Ply: = 1] =[y; 0]
=P [u=>-x/p]
=P [(Wo) = - x;pla]
=P [(ulo) < x{Blo]
= F @;B/ o],s0 that
Py = 1] = F@Blu“?) (3.5.2)
The null hypothesis of homoskedasticity corresportdsthe parameter

restriction H :y =0. This hypothesis can be tested by the LR-{Bs¢ unrestricted

likelihood function is obtain from the log-likelilbd by replacing the term

m; = F (c]B) bym; = F (c Blu4?).

3.5.3 Lagrange Multiplier Test for Heteroskedastidy

Alternative is to use the LM-test, so that only thveodel under the null
hypothesis (withy =0) needs to be estimated. By working out the tdas for the
gradient and the Hessian of the unrestricted hiogld, it can be shown that the LM-
test can be performed as if Equation (3.5.2) wareralinear regression model.

First estimate the model without heteroskedastieitthat is, under the null
hypothesis thag =0. This amounts to estimating the model P=(%)=F (x;8) by ML.

The residuals of this model are denoted by

U=Vi-1,
=y—F(x;B)

As a second up step, regress the residuas the gradient of the non-linear
model P(y = 1) = F éc{ﬁ/uzily), taking into account that the residuals are
heteroskedastic. This amounts to applying (feasiveighted least squares- that is,
OLS after division for th"iobservation by the (estimated) standard deviafitwe.
variance of the 'error term-y; is Var (y - ;) = Var (y) = m;(1-m;). m; is replaced by

77, obtained in the first step, so that the weidtthe {" observationin WLS is given
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by 14/7,(1 — 7,. Further, the gradient of the function:F{,[E/uzi'V) in Equation (3.5.2)

, when evaluated a4=0, is given by

OF (x| Bu*Y) _

oF (x] ﬁ/uzfy) , ,
—L = -t (x{B) x{Bz.

OF

=f (B X,

Therefore, the required auxiliary regression iis gecond step can be written

in terms of the standardized residuals as

s _Yitm _ f@ib) s | fOiDXD
WS R  Jmam O Eam a0t 3939)

Under the null hypothesis of homoskedasticityrehieolds that LM = nR,,
where nR.. denotes the non-centered-Rat is , the explained sum of squares of
Equation (3.5.3) is divided by the non-centeredltstim of square§-, (u})?2. As the
regression in Equation (3.5.3) does not contaiorestant term on the right-hand side,
one should take here the non-centerédi&ined by R..= ¥ (u))%/¥ (u})?, wheretl’;
denotes the fitted values of the regression in Egoa(3.5.3). Reject the null
hypothesis for large values of the LM-test, and erndhe null hypothesis of
homoskedasticityy = 0) it is asymptotically distributed as*Xg), where g is the

number of variables injZhat is , the number of parameteryin
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CHAPTER IV

APPLICATION OF LINEAR PROBABILITY
LOGIT AND PROBIT MODELS

4.1 Introduction

In this chapter, the application of linear probipil logit and probit models
are demonstrated by survey data. The survey dathinghis chapter are provided by
Ma Moe Sandar Oo who collected the data for hertétasf public Administration
Thesis. The data were responses of the mother@EBildren under 3 years of age in
Thingungyun Township. The weights of the childreerevassessed from the standard
weight chart using by Township Health Center. Themee four different colours (red,
yellow, green, white) to present the condition biflds weight on this chart. Red
colour represents the child's weight, which reflettte severe malnutrition. Yellow
colour stands for moderate malnutrition of chilctedition and green colour signifies
as good condition. White colour zone shows anotben of malnutrition which is
known as over-eight child. In general, malnutriticen be defined as underweight in
developing countries, which is a serious publiclthearoblem that has been linked to
a substantial increase in the risk of morbidity andrtality. The term malnutrition
refers to both over-nutrition and under-nutritidalnutrition is a general term for a
medical condition caused by an improper or inadegquifet and nutrition. In This
study, if child's weight colour is green, the chilah be determined by nutrition, and if
child's weight colour is yellow (or) red, the chitdn be determined by malnutrition.
The white colour case is very rare in Myanmar. \8loite colour case is omitted from
this study.

Out of these collected information, mother's agether's education level and
child's weight colour variable are used to devellop models. Mother's education
levels are divided into 4 categories such as pgmariddle, high, and graduate.
Child's weight colour is divided into 3 categormgsch as green, yellow, and red. To
estimate the models, mother's age and mother'sagduaclevel are used as

independent variables and child's weight colowsisd as dependent variable.
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4.2 Models for Child's Weight Colour

In construction the models, the variables are nagd

Yi =1 if child's weight colour is green

=0 otherwise

MAGE; = mother's age

MEDU; = if mother's education is primary school level
= otherwise

MEDU, =1 if mother's education is middle school level
= otherwise

MEDU3 = if mother's education is high school level
= otherwise

The Linear Probability Model (LPM)
Yi= Bl + Bz MAGE; + 63 MEDU; + 84 MEDU,+ 85 MEDUs+ y;

where y is disturbance term and the unknown parameigr,, B3, B4 and s in the
LPM are estimated by using the weighted least sguanethod using Statistical
Package for Social Science (SPSS). It is assunatdhé variance of;us proportional
to the variable MAGE

The Logit Model

The ligit model here can be written as;

L= In% =B + BaMAGE; + B3 MEDU; + B4 MEDU+ Bs MEDU3 + U

wherer; = the probability that child's weights colour iegn

1- m; = the probability that child's weight colour istrgpeen

The Probit Model
Assume that; = unobservable untility index (latent variable)
[; = critical or threshold level of the index

If I; exceedd;, the child's weight colour will be green , othesevit will not.
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l; :Bl+62 MAGE; +83MEDU1+B4MEDUZ+ 85 MEDU3;
I =F*(I)

=F'(m;)

= B]_ + Bz MAGE; + Bg MEDU; + 64 MEDU,+ 65 MEDU3;

where F is the inverse of the normal cumulative distribotfunction (CDF).

7, =R (Y =1X)
=R (I; < 1)
=F @1 + Bz MAGE; + 63 MEDU, + B4 MEDU»+ 65 MEDUg)

m; represents the probability that child's weigbtour is green , it is
measured by the area of the standard normal cuowe £ ato |;.

The unknown parameters in the logit and probit e®dre estimated by using
method of Maximum Likelihood and Enter Regressioetidd through computer
software of (SPSS).

4.3 Results
The estimated models and their results are destribethis section. The

estimated standard error (se) and computed p-vahgeshown in parentheses.

Linear Probability Model
Y, = 1.079- 0.009 MAGE- 0.052 MEDY- 0.009 MEDU + 0.139 MEDUY

se (0.044)  (0.003) (0.094) (0.065) (0.083)
P. values (0.000)  (0.001) (0.580) (0.131) (0.096)
R?=0.146,R* = 0.134, count R=0.76, Pseudo®= 0.15,
McFadden  R=0.157, F =12.598

According to the p-values it van be said thatwagable MEDUY and MEDU
are insignificant and the variables MAGEhd MEDUY are significant at % level, and
10% level, respectively. The insignificant varisbMEDU, and MEDUY are dropped
from the model and estimate the model for child&ght colour with the variable
MAGE; and MEDUW.
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The re-estimated model is as follows:

Y,= 1.082- 0.012 MAGE+ 0.217 MEDY

se  (0.044) (0.022) (0.063)

p.values (0.000) (0.000) (0.000)

R?=0.105,R? = 0.102, count R=0.76, Pseudo®= 0.141,
McFadden  R=0.15, F=34.87

The results imply that the variable MAGEhd MEDW; are important factors in
explaining the changes of probability of child'strition . It can be said that if the
mother's age increases by 1-year and being moth@usation in high school level
remained unchanged, the probability of child's itiotr will decrees by about 1.2% IF
the mother's education is in high school level dmihg mother's age remained

unchanged, the probability of child's nutrition Miiicrease by 21.7%.

Logit Model

~ T
L, =In—
1-7

=11.146 - 0.248 MAGE- 2.657 MEDY- 3.029 MEDY + 0.268 MEDUW

se (1.768) (0.044) (1.134) (1.052) (1.271)
p.values (0.000) (0.000) (0.019) (0.004) (0)833
count R = 0.79 , pseudo®= 0.102, McFadderfR= 0.211, X% =64.241

According to the p.values it can be said that eafable, except MEDYJis
significant at 1% level and = 64.241 indicates that the whole model is highly
significant . The insignificant variable MERQUs excluded from the model and
estimate the model for child's weight colour witke tvariables MAGE, MEDU;, and

MEDU,. The re-estimated model is as follows;

~ 7
L ==
1_

A

=10.986 - 0.248 MAGE- 2.488 MEDY— 2.86 MEDU
se (1.577) (0.044) (0.765) (0.693)
p.values (0.000) (0.000) (0.001) (0.000)

count R = 0.62 , pseudoR= 0.187, McFadderfR= 0.211, X?%=69.195
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From the re-estimated ligit model, MAGBMEDU; and MEDU are found to
be important factors in explaining the changeseflog of odds for child's nutrition. It
can be found that being other factors remained amgéd, with an increase of 1-year
of mother's age, there is an expectation of deer@ashe log of odds for child's
nutrition about 0.25. Moreover, if the mother's eation is in primary school level, it
is expected to have a decrease of 2.488 and imibiner's education is in middle
school level, it is expected to have a decreas2. &8, in the log of odds for child's

nutrition, respectively.

Probit Model

fi= -2.658 - 0.002 MAGE+ 0.103 MEDY + 0.017 MEDUY + 0.050 MEDY

se (0.164) (0.005) (0.098) (0.079) (0.056)
p.values (0.000) (0.763) (0.291) (0.826) (0)446

countR=0.76, X?=101.624

According to the p. values it can be said thatatherariables are insignificant
at 1% and 10% level.

In summarizing the results and findings of estedamodels, the diagnostic
statistics such as p-values, computed F-valuescangputed X values indicate that
the LPM and logit model are found to be significaradels.

From the estimated LPM and logit models the véeiamother's age and
mother's education are important factors in expigithe changes of child's nutrition.

For the estimated models, the couftRlue is high, whereas the McFadden R
vale and pseudo Rare low. Although these’Rvalues are not directly comparable,
they can give some idea about the orders of madmitBesides, one should not
overplay the importance of goodness of fit in medethere the regressand is
dichotomous. The estimated Ray seem rather low, but in view of the large samp

size, this Ris still significant on the basis of the F test.
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CHAPTER V

CONCLUSION

In this paper, qualitative response models: lir@abability, logit, and probit

models in which the dependent variable involvesy dmlo qualitative choices are

studied together with their specification and eation procedure. These models are

valuable in the analysis of survey data. The ingrdrtharacteristics of this study are

as follows:

1.

Qualitative response regression models refer toetsad which the response,
or regressand, variable is not quantitative omagrval scale.

The simplest possible qualitative response regyassiodel is the binary
model in which the regressand is of the yes/naesgnce / absence type.

The simplest possible binary regression model eslitear probability model
(LPM) in which the binary response variable is esged on the relevant
explanatory variables by using the standard OLShaustlogy. Simplicity may
not be a virtue here, fore the LPM suffers fromesal/ estimating problems.
Even if some of the estimation problems can be carae, the fundamental
weakness of the LPM is that it assumes that théghity of something
happening increases linearly with the level of ttegressor. This very
restrictive assumption can be avoided by usindagie and probit models.

In the logit model the dependent variable is tlgedbthe odds ratio, which is a
linear function of the regressors. The probabifilpction that underlies the
logit model is the logistic distribution. If the tdaare available in grouped form,
OLS can be used to estimate the parameters obtiierhodel, provided the
heteroscedastic nature of the error term is takémaccount explicitly. If the
data are available at the individual, or micro lew®nlinear-in-the-parameter
estimating procedures, like as method of maximkelihood can be used.

If the normal distribution is chosen as the appeiprprobability distribution,
then the probit model can be used. This model ihemaatically a bit difficult
as it involves integrals.

The estimated model can be interpreted in terntheigns and significance

of the estimated coefficient. The model can bewatald in different ways, by



30

using diagnostic tests (t or Z-test, LR-test) agdrieasuring the model quality

(goodness of fit B).

As an application, these models are developed atichagted by using SPSS
computer software with the survey data of the motie00-children in Thingungyun
Township.

The findings are as follows:

(1) According to the computed F value and value, the LPM and logit models
are significant but probit is not.

(2) IN the estimated LPM, it can be concluded thatvtweables mother's age and
mother's education are found to be important fagctoexplaining the child's
nutrition. From the estimated model, being othetdes remained unchanged,
an increase in the mother's age of 1-year will e@se the probability of child's
nutrition by about 1.2%.

(3) In the estimated logit model, it can be said that mother's age and mother's
education are found to be important factors in @xohg the child's nutrition
From the estimated model, being other factors reethiunchanged, an
increase in the mother's age of 1-year will de@etiee odds for child's
nutrition by about 22%. If the mother's educatisnni primary school level, it
is expected to have an decrease about 92%, if thtbems education is in
middle school level, it is expected to have a deseeabout 94% in the odds for

child's nutrition, respectively.
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